学术探索
学术期刊
新闻热点
数据分析
智能评审
立即登录
COVARIANT DEFINITION OF INERTIAL FORCES
被引:45
作者
:
ABRAMOWICZ, MA
论文数:
0
引用数:
0
h-index:
0
机构:
ICTP,I-34014 TRIESTE,ITALY
ABRAMOWICZ, MA
NUROWSKI, P
论文数:
0
引用数:
0
h-index:
0
机构:
ICTP,I-34014 TRIESTE,ITALY
NUROWSKI, P
WEX, N
论文数:
0
引用数:
0
h-index:
0
机构:
ICTP,I-34014 TRIESTE,ITALY
WEX, N
机构
:
[1]
ICTP,I-34014 TRIESTE,ITALY
[2]
SISSA,I-34013 TRIESTE,ITALY
[3]
MAX PLANCK INST ASTROPHYS,W-8046 GARCHING,GERMANY
[4]
MAX PLANCK GESELL,ARBEITSGRP GRAVITATIONSTHEORIE,O-6800 JENA,GERMANY
来源
:
CLASSICAL AND QUANTUM GRAVITY
|
1993年
/ 10卷
/ 10期
关键词
:
D O I
:
10.1088/0264-9381/10/10/001
中图分类号
:
P1 [天文学];
学科分类号
:
0704 ;
摘要
:
We present a covariant definition of inertial forces in general relativity (gravitational, centrifugal, Euler and Coriolis-Lense-Thirring) which is valid in all spacetimes, including ones with no symmetry.
引用
收藏
页码:L183 / L186
页数:4
相关论文
共 5 条
[1]
OPTICAL REFERENCE GEOMETRY FOR STATIONARY AND STATIC DYNAMICS
ABRAMOWICZ, MA
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV CALIF SANTA BARBARA,INST THEORET PHYS,SANTA BARBARA,CA 93106
ABRAMOWICZ, MA
CARTER, B
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV CALIF SANTA BARBARA,INST THEORET PHYS,SANTA BARBARA,CA 93106
CARTER, B
LASOTA, JP
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV CALIF SANTA BARBARA,INST THEORET PHYS,SANTA BARBARA,CA 93106
LASOTA, JP
[J].
GENERAL RELATIVITY AND GRAVITATION,
1988,
20
(11)
: 1173
-
1183
[2]
ABRAMOWICZ MA, 1993, RENAISSANCE GENERAL
[3]
GREENE RD, 1974, J MATH PHYS, V16, P153
[4]
MILLER JC, 1992, APPROACHES TO NUMERICAL RELATIVITY, P114, DOI 10.1017/CBO9780511524639.014
[5]
SYNGE JL, 1960, RELATIVITY GENERAL T
←
1
→
共 5 条
[1]
OPTICAL REFERENCE GEOMETRY FOR STATIONARY AND STATIC DYNAMICS
ABRAMOWICZ, MA
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV CALIF SANTA BARBARA,INST THEORET PHYS,SANTA BARBARA,CA 93106
ABRAMOWICZ, MA
CARTER, B
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV CALIF SANTA BARBARA,INST THEORET PHYS,SANTA BARBARA,CA 93106
CARTER, B
LASOTA, JP
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV CALIF SANTA BARBARA,INST THEORET PHYS,SANTA BARBARA,CA 93106
LASOTA, JP
[J].
GENERAL RELATIVITY AND GRAVITATION,
1988,
20
(11)
: 1173
-
1183
[2]
ABRAMOWICZ MA, 1993, RENAISSANCE GENERAL
[3]
GREENE RD, 1974, J MATH PHYS, V16, P153
[4]
MILLER JC, 1992, APPROACHES TO NUMERICAL RELATIVITY, P114, DOI 10.1017/CBO9780511524639.014
[5]
SYNGE JL, 1960, RELATIVITY GENERAL T
←
1
→