DETERMINATION OF SITE PERCOLATION TRANSITIONS FOR 2D MOSAICS BY MEANS OF THE MINIMAL SPANNING TREE APPROACH

被引:22
作者
DIRIBARNE, C
RASIGNI, G
机构
[1] Département de Physique des Interactions Photons-Matière, Faculté des Sciences et Techniques de St-Jérôme, 13397 Marseille Cedex 20
关键词
D O I
10.1016/0375-9601(95)00794-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quite new approach based on the graph theory through the minimal spanning tree analysis is applied to the study of site percolation transitions in 2D regular lattices. The critical probability thresholds p(c) are computed for regular and semi-regular mosaics allowed in the plane. It is shown that there is a direct relation between p(c) and a geometrical parameter characterizing the mosaics.
引用
收藏
页码:95 / 98
页数:4
相关论文
共 19 条
[1]  
BALL WWR, 1959, MATH RECREATIONS ESS
[2]  
DEAN P, 1967, PROC CAMB PHILOS S-M, V63, P477
[3]   MINIMAL SPANNING TREE - A NEW APPROACH FOR STUDYING ORDER AND DISORDER [J].
DUSSERT, C ;
RASIGNI, G ;
RASIGNI, M ;
PALMARI, J ;
LLEBARIA, A .
PHYSICAL REVIEW B, 1986, 34 (05) :3528-3531
[4]   MINIMAL SPANNING TREE APPROACH TO PERCOLATION AND CONDUCTIVITY THRESHOLD [J].
DUSSERT, C ;
RASIGNI, G ;
RASIGNI, M .
PHYSICS LETTERS A, 1989, 139 (1-2) :35-38
[5]  
ESSAM JW, 1978, J PHYS A-MATH GEN, V11, P1983
[6]  
Grimmett G., 1989, PERCOLATION
[7]  
HOFMAN R, 1983, PATTERN RECOGN LETT, V1, P175
[8]   EXTRAPOLATION OF TRANSFER-MATRIX DATA FOR PERCOLATION AND LATTICE ANIMALS BY THE ROMBERG-BELEZNAY ALGORITHM [J].
KERTESZ, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (04) :599-601
[9]  
Kesten H., 1982, PERCOLATION THEORY M
[10]  
ROHLF FJ, 1973, COMPUT J, V16, P93