MAXIMUM-LIKELIHOOD-ESTIMATION FOR HIDDEN MARKOV-MODELS

被引:254
作者
LEROUX, BG
机构
关键词
MARKOV CHAIN; CONSISTENCY; SUBADDITIVE ERGODIC THEOREM; IDENTIFIABILITY; ENTROPY; KULLBACK-LEIBLER DIVERGENCE; SHANNON-MCMILLAN-BREIMAN THEOREM;
D O I
10.1016/0304-4149(92)90141-C
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hidden Markov models assume a sequence of random variables to be conditionally independent given a sequence of state variables which forms a Markov chain. Maximum-likelihood estimation for these models can be performed using the EM algorithm. In this paper the consistency of a sequence of maximum-likelihood estimators is proved. Also, the conclusion of the Shannon-McMillan-Breiman theorem on entropy convergence is established for hidden Markov models.
引用
收藏
页码:127 / 143
页数:17
相关论文
共 20 条
[1]   A RECURSIVE ALGORITHM FOR THE BAYES SOLUTION OF THE SMOOTHING PROBLEM [J].
ASKAR, M ;
DERIN, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (02) :558-561
[2]   STATISTICAL INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1554-&
[3]   AN INEQUALITY WITH APPLICATIONS TO STATISTICAL ESTIMATION FOR PROBABILISTIC FUNCTIONS OF MARKOV PROCESSES AND TO A MODEL FOR ECOLOGY [J].
BAUM, LE ;
EAGON, JA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (03) :360-&
[4]   A MAXIMIZATION TECHNIQUE OCCURRING IN STATISTICAL ANALYSIS OF PROBABILISTIC FUNCTIONS OF MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T ;
SOULES, G ;
WEISS, N .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (01) :164-&
[5]  
CHURCHILL GA, 1989, B MATH BIOL, V51, P79
[6]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[7]   PRODUCTS OF RANDOM MATRICES [J].
FURSTENBERG, H ;
KESTEN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (02) :457-469
[8]   A PROBABILISTIC DISTANCE MEASURE FOR HIDDEN MARKOV-MODELS [J].
JUANG, BH ;
RABINER, LR .
AT&T TECHNICAL JOURNAL, 1985, 64 (02) :391-408
[9]  
KARLIN S, 1975, 1ST COURSE STOCHASTI
[10]   CONSISTENCY OF THE MAXIMUM-LIKELIHOOD ESTIMATOR IN THE PRESENCE OF INFINITELY MANY INCIDENTAL PARAMETERS [J].
KIEFER, J ;
WOLFOWITZ, J .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (04) :887-906