TIME OBSERVABLES IN QUANTUM-THEORY

被引:69
作者
BUSCH, P
GRABOWSKI, M
LAHTI, PJ
机构
[1] NICOLAUS COPERNICUS UNIV,INST PHYS,PL-87100 TORUN,POLAND
[2] UNIV TURKU,DEPT PHYS,SF-20500 TURKU 50,FINLAND
关键词
D O I
10.1016/0375-9601(94)90785-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
''Time'' as an observable of a physical system is to be understood with reference to the evolution of some nonstationary quantity. Thus, any observable 'time'' is the time of occurrence of an event of a certain type, defined by the appearance of some specified value of the dynamical quantity in question. This interpretation of time observables is illustrated by means of some examples.
引用
收藏
页码:357 / 361
页数:5
相关论文
共 13 条
[1]   TIME IN QUANTUM THEORY AND UNCERTAINTY RELATION FOR TIME AND ENERGY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1961, 122 (05) :1649-&
[2]   ON THE ENERGY TIME UNCERTAINTY RELATION .1. DYNAMICAL TIME AND TIME INDETERMINACY [J].
BUSCH, P .
FOUNDATIONS OF PHYSICS, 1990, 20 (01) :1-32
[3]  
BUSCH P, 1994, IN PRESS WHO AFRAID
[5]   PHASE AND NUMBER [J].
GALINDO, A .
LETTERS IN MATHEMATICAL PHYSICS, 1984, 8 (06) :495-500
[6]   CANONICALLY CONJUGATE PAIRS, UNCERTAINTY RELATIONS, AND PHASE OPERATORS [J].
GARRISON, JC ;
WONG, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (08) :2242-&
[7]  
Heisenberg W., 1927, Z PHYS, V43, P172
[8]  
HOLEVO AS, 1982, PROBABILISTIC STATIS
[9]  
JAMMER M, 1974, PHILOS QUANTUM MECHA
[10]  
LUDWIG G, 1983, F QUANTUM MECHANICS, V1