COKRIGING NONSTATIONARY DATA

被引:12
作者
STEIN, A [1 ]
VANEIJNSBERGEN, AC [1 ]
BARENDREGT, LG [1 ]
机构
[1] AGR UNIV WAGENINGEN,DEPT MATH,6703 BC WAGENINGEN,NETHERLANDS
来源
MATHEMATICAL GEOLOGY | 1991年 / 23卷 / 05期
关键词
COKRIGING; INCREMENTS; NON-STATIONARITY; MULTIVARIATE RANDOM FUNCTION; PSEUDOCOVARIANCE FUNCTION; PSEUDO-CROSS-COVARIANCE FUNCTION;
D O I
10.1007/BF02082532
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Universal cokriging is used to obtain predictions when dealing with multivariate random functions. An important type of nonstationarity is defined in terms of multivariate random functions with increments which are stationary of order k. The covariance between increments of different variables is modeled by means of the pseudo-cross-covariance function. Criteria are formulated to which the parameters of pseudo-cross-covariance functions must comply so as to ensure positive-definiteness. Cokriging equations and the induced cokriging equations are given. The study is illustrated by an example from soil science.
引用
收藏
页码:703 / 719
页数:17
相关论文
共 25 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
[Anonymous], 1978, MINING GEOSTATISTICS
[3]   THE EQUIVALENCE OF PREDICTIONS FROM UNIVERSAL KRIGING AND INTRINSIC RANDOM-FUNCTION KRIGING [J].
CHRISTENSEN, R .
MATHEMATICAL GEOLOGY, 1990, 22 (06) :655-664
[4]  
CORSTEN LCA, 1989, STAT NEERL, V43, P69
[5]   KRIGING NONSTATIONARY DATA [J].
CRESSIE, N .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (395) :625-634
[6]  
Delfiner P., 1976, ADV GEOSTATISTICS MI, V24, P49
[7]  
DOWD PA, 1989, GEOSTATISTICS, P151
[8]  
Gelfand I. M., 1964, GENERALIZED FUNCTION, V1
[9]  
ITO K, 1953, MEM COLL SCI U KYO A, V0028, P00209
[10]  
KITANIDIS PK, 1983, WATER RESOUR RES, V19, P901