A NOTE ON PLANAR BROWNIAN-MOTION

被引:6
作者
BRASSESCO, S
机构
关键词
PLANAR BROWNIAN MOTION; HITTING TIME OF AN ANGULAR BARRIER; REFLECTION PRINCIPLE;
D O I
10.1214/aop/1176989703
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The joint density of the total winding and the radius of a planar Brownian motion is calculated, by solving the associated backward equation. An explicit expression for the distribution of the hitting time of an angular barrier is shown; in particular, the behavior of the tail of the distribution is determined.
引用
收藏
页码:1498 / 1503
页数:6
相关论文
共 9 条
[1]  
[Anonymous], 1958, T AM MATH SOC
[2]  
[Anonymous], 1991, INTRO PROBABILITY TH
[3]  
[Anonymous], 1996, TABLES INTEGRALS SER
[4]  
McKean H. P, 1969, STOCHASTIC INTEGRALS
[5]   FURTHER ASYMPTOTIC LAWS OF PLANAR BROWNIAN-MOTION [J].
PITMAN, J ;
YOR, M .
ANNALS OF PROBABILITY, 1989, 17 (03) :965-1011
[6]  
PITMAN JW, 1986, ANN PROBAB, V714, P733
[7]  
SHEEP L, 1981, COMMUNICATION
[8]  
Watson G.N., 1966, THEORY BESSEL FUNCTI, Vsecond
[9]   LAW OF THE INDEX OF DRIFTING BROWNIAN-MOTION, AND THE HARTMAN-WATSON DISTRIBUTION [J].
YOR, M .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 53 (01) :71-95