SOLVING PROBABILITY TRANSFORM FUNCTIONAL-EQUATIONS FOR NUMERICAL INVERSION

被引:34
作者
ABATE, J [1 ]
WHITT, W [1 ]
机构
[1] AT&T BELL LABS,MURRAY HILL,NJ 07974
关键词
NUMERICAL TRANSFORM INVERSION; LAPLACE TRANSFORMS; FUNCTIONAL EQUATIONS; M/G/1; QUEUE; BUSY PERIOD; IMPLICITLY DEFINED TRANSFORMS;
D O I
10.1016/0167-6377(92)90085-H
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Many methods for numerically inverting transforms require values of the transform at complex arguments. However, in some applications, the transforms are only characterized implicitly via functional equations. This is illustrated by the busy-period distribution in the M/G/1 queue. In this paper we provide conditions for iterative methods to converge for complex arguments. Moreover, we show that stochastic monotonicity properties can provide useful bounds.
引用
收藏
页码:275 / 281
页数:7
相关论文
共 19 条
[1]   NUMERICAL INVERSION OF PROBABILITY GENERATING-FUNCTIONS [J].
ABATE, J ;
WHITT, W .
OPERATIONS RESEARCH LETTERS, 1992, 12 (04) :245-251
[2]  
Abate J., 1992, Queueing Systems Theory and Applications, V10, P5, DOI 10.1007/BF01158520
[3]  
ABATE J, 1991, NUMERICAL INVERSION
[4]  
ABATE J, IN PRESS OPER RES
[5]  
[Anonymous], 1991, INTRO PROBABILITY TH
[6]  
Cohen JW, 1982, SINGLE SERVER QUEUE
[7]  
Cooper R B, 1982, INTRO QUEUEING THEOR
[8]  
DOSHI BT, 1983, AT&T TECH J, V62, P1251
[9]   OBSERVING STOCHASTIC PROCESSES AND APPROXIMATE TRANSFORM INVERSION [J].
GAVER, DP .
OPERATIONS RESEARCH, 1966, 14 (03) :444-&
[10]   ON TIME-DEPENDENT QUEUING-PROCESSES [J].
KEILSON, J ;
KOOHARIAN, A .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (01) :104-112