NUMERICAL STUDY OF BILLIARD MOTION IN AN ANNULUS BOUNDED BY NON-CONCENTRIC CIRCLES

被引:50
作者
SAITO, N
HIROOKA, H
FORD, J
VIVALDI, F
WALKER, GH
机构
[1] GEORGIA INST TECHNOL,SCH PHYS,ATLANTA,GA 30332
[2] UNIV TENNESSEE,DEPT PHYS,CHATTANOOGA,TN 37402
来源
PHYSICA D | 1982年 / 5卷 / 2-3期
关键词
D O I
10.1016/0167-2789(82)90022-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:273 / 286
页数:14
相关论文
共 17 条
[1]  
Arnold V., 1968, ERGODIC PROBLEMS CLA, P6
[2]   NUMERICAL EXPERIMENTS ON FREE MOTION OF A POINT MASS MOVING IN A PLANE CONVEX REGION - STOCHASTIC TRANSITION AND ENTROPY [J].
BENETTIN, G ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1978, 17 (02) :773-785
[3]  
Berry M. V., 1978, AIP C P, V46, P16, DOI DOI 10.1063/1.31417
[4]  
Birkhoff G.D., 1927, DYNAM SYST, VVolume 9
[5]   ERGODIC PROPERTIES OF NOWHERE DISPERSING BILLIARDS [J].
BUNIMOVICH, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (03) :295-312
[6]  
Bunimovich LA., 1974, FUNCT ANAL APPL+, V8, P254, DOI [10.1007/BF010757000303.28018, DOI 10.1007/BF010757000303.28018]
[7]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[8]  
FORD J, 1975, FUNDAMENTAL PROBLEMS, V3, P215
[9]   2-DIMENSIONAL MEASURE-PRESERVING MAPPINGS [J].
GREENE, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (05) :760-&
[10]  
HELLEMAN RHG, 1980, FUNDAMENTAL PROBLEMS