THE ORLIK-SOLOMON ALGEBRA ON THE PARTITION LATTICE AND THE FREE LIE-ALGEBRA

被引:15
作者
BARCELO, H
BERGERON, N
机构
[1] University of California, San Diego, La Jolla
基金
美国国家科学基金会;
关键词
D O I
10.1016/0097-3165(90)90049-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the same spirit as before, we relate the action of Sn on the Orlik-Solomon algebra of the partition lattice to the action of Sn on the exterior algebra of the free Lie algebra. More precisely, we construct an explicit basis in each of those spaces and then we show that the matrices of adjacent transposition in one space are equal to minus the transpose of the matrices in the other space. This equality shows that the first Sn-module is the dual of the other, tensored by the sign-representation. © 1990.
引用
收藏
页码:80 / 92
页数:13
相关论文
共 15 条
[1]  
BARCELO H, IN PRESS ACTION SYMM
[2]  
BERGERON F, IN PRESS P SPRINGER
[3]  
BERGERON N, IN PRESS HYPEROCTAHE
[4]  
BJORNER A, 1987, 24 U AUGSB MATH DEP
[5]   FREE DIFFERENTIAL CALCULUS .4. THE QUOTIENT GROUPS OF THE LOWER CENTRAL SERIES [J].
CHEN, KT ;
FOX, RH ;
LYNDON, RC .
ANNALS OF MATHEMATICS, 1958, 68 (01) :81-95
[6]  
GARSIA AM, IN PRESS COMBINATORI
[7]  
JOYAL A, 1986, LECT NOTES MATH, V1234, P126
[8]  
Kljacko A. A., 1974, SIBERIAN MATH J, V15, P1296
[9]   ON THE ACTION OF THE SYMMETRICAL GROUP ON THE COHOMOLOGY OF THE COMPLEMENT OF ITS REFLECTING HYPERPLANES [J].
LEHRER, GI ;
SOLOMON, L .
JOURNAL OF ALGEBRA, 1986, 104 (02) :410-424
[10]  
LEHRER GI, 1987, J LONDON MATH SOC, V36