FIRST-ORDER REGGE CALCULUS

被引:43
作者
BARRETT, JW
机构
[1] Department of Mathematics, Nottingham NG7 2RD, University Park
关键词
D O I
10.1088/0264-9381/11/11/013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A first order form of Regge calculus is defined in the spirit of Palatini's action for general relativity. The extra independent variables are the interior dihedral angles of a simplex, with conjugate variables the areas of the triangles. There is a discussion of the extent to which these areas can be used to parametrize the space of edge lengths of a simplex.
引用
收藏
页码:2723 / 2730
页数:8
相关论文
共 11 条
[1]   SEMICLASSICAL LIMITS OF SIMPLICIAL QUANTUM-GRAVITY [J].
BARRETT, JW ;
FOXON, TJ .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (03) :543-556
[2]   REGGE CALCULUS AS A LOCAL THEORY OF THE POINCARE GROUP [J].
CASELLE, M ;
DADDA, A ;
MAGNEA, L .
PHYSICS LETTERS B, 1989, 232 (04) :457-461
[3]   REGGE-PALATINI CALCULUS [J].
DRUMMOND, IT .
NUCLEAR PHYSICS B, 1986, 273 (01) :125-136
[4]   LORENTZ INVARIANCE AND GRAVITATIONAL FIELD [J].
KIBBLE, TW .
JOURNAL OF MATHEMATICAL PHYSICS, 1961, 2 (02) :212-&
[5]  
Palatini A., 1980, REND CIRC MAT PALERM, V43, P203
[6]   GENERAL RELATIVITY WITHOUT COORDINATES [J].
REGGE, T .
NUOVO CIMENTO, 1961, 19 (03) :558-571
[7]  
REGGE T, 1968, SPECTROSCOPIC GROUP
[8]  
Sciama DW, 1962, RECENT DEV GEN RELAT, P415
[9]   TIME-EVOLUTION PROBLEM IN REGGE CALCULUS [J].
SORKIN, R .
PHYSICAL REVIEW D, 1975, 12 (02) :385-396
[10]   THE CONSTRUCTION OF SORKIN TRIANGULATIONS [J].
TUCKEY, PA .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (08) :L109-L113