NUMEROV METHOD MAXIMALLY ADAPTED TO THE SCHRODINGER-EQUATION

被引:90
作者
IXARU, LG
RIZEA, M
机构
关键词
D O I
10.1016/0021-9991(87)90139-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:306 / 324
页数:19
相关论文
共 19 条
[1]  
ALLEN DND, 1962, Q J MECH APPL MATH, V15, P11
[2]  
Allison A. C., 1970, Journal of Computational Physics, V6, P378, DOI 10.1016/0021-9991(70)90037-9
[3]  
Blatt J. M., 1967, J COMP PHYSIOL, V1, P382, DOI [10.1016/0021-9991(67)90046-0, DOI 10.1016/0021-9991(67)90046-0]
[4]  
Gautschi W., 1961, NUMER MATH, V3, P381, DOI DOI 10.1007/BF01386037
[5]  
Henrici P., 1964, DISCRETE VARIABLE ME
[6]   PERTURBATIVE NUMERICAL-METHODS TO SOLVE THE SCHRODINGER-EQUATION [J].
IXARU, LG .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 20 (01) :97-112
[7]   A NUMEROV-LIKE SCHEME FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION IN THE DEEP CONTINUUM SPECTRUM OF ENERGIES [J].
IXARU, LG ;
RIZEA, M .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 19 (01) :23-27
[8]   COMPARISON OF SOME 4-STEP METHODS FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION [J].
IXARU, LG ;
RIZEA, M .
COMPUTER PHYSICS COMMUNICATIONS, 1985, 38 (03) :329-337
[9]  
IXARU LG, 1984, NUMERICAL METHODS DI
[10]   CHEBYSHEVIAN MULTISTEP METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS [J].
LYCHE, T .
NUMERISCHE MATHEMATIK, 1972, 19 (01) :65-&