Progressive Approach to Relational Entity Resolution

被引:37
作者
Altowim, Yasser [1 ]
Kalashnikov, Dmitri V. [1 ]
Mehrotra, Sharad [1 ]
机构
[1] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92717 USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2014年 / 7卷 / 11期
基金
美国国家科学基金会;
关键词
D O I
10.14778/2732967.2732975
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a progressive approach to entity resolution (ER) that allows users to explore a trade-off between the resolution cost and the achieved quality of the resolved data. In particular, our approach aims to produce the highest quality result given a constraint on the resolution budget, specified by the user. Our proposed method monitors and dynamically reassesses the resolution progress to determine which parts of the data should be resolved next and how they should be resolved. The comprehensive empirical evaluation of the proposed approach demonstrates its significant advantage in terms of efficiency over the traditional ER techniques for the given problem settings.
引用
收藏
页码:999 / 1010
页数:12
相关论文
共 22 条
  • [1] Query-Driven Approach to Entity Resolution
    Altwaijry, Hotham
    Kalashnikov, Dmitri V.
    Mehrotra, Sharad
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2013, 6 (14): : 1846 - 1857
  • [2] Ananthakrishna R., 2002, Proceedings of the Twenty-eighth International Conference on Very Large Data Bases, P586
  • [3] Swoosh: a generic approach to entity resolution
    Benjelloun, Omar
    Garcia-Molina, Hector
    Menestrina, David
    Su, Qi
    Whang, Steven Euijong
    Widom, Jennifer
    [J]. VLDB JOURNAL, 2009, 18 (01) : 255 - 276
  • [4] Bhattacharya I., 2007, ACM T KNOWL DISCOV D, P5, DOI [10.1145/1217299.1217304, DOI 10.1145/1217299.1217304]
  • [5] Burg J.J., 1999, ELECT NOTES DISCRETE, V1, P26
  • [6] Chen ZQ, 2009, ACM SIGMOD/PODS 2009 CONFERENCE, P207
  • [7] Explore or Exploit? Effective Strategies for Disambiguating Large Databases
    Cheng, Reynold
    Lo, Eric
    Yang, Xuan S.
    Luk, Ming-Hay
    Li, Xiang
    Xie, Xike
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2010, 3 (01): : 815 - 825
  • [8] THE COMPUTATIONAL-COMPLEXITY OF PROBABILISTIC INFERENCE USING BAYESIAN BELIEF NETWORKS
    COOPER, GF
    [J]. ARTIFICIAL INTELLIGENCE, 1990, 42 (2-3) : 393 - 405
  • [9] Culotta A., 2005, P 14 ACM INT C INFOR, P257, DOI DOI 10.1145/1099554
  • [10] Dong X., 2005, SIGMOD, P85, DOI DOI 10.1145/1066157.1066168