MUTATIONAL ANALYSIS OF THE SACCHAROMYCES-CEREVISIAE GENERAL REGULATORY FACTOR CP1

被引:17
作者
MASISON, DC [1 ]
OCONNELL, KF [1 ]
BAKER, RE [1 ]
机构
[1] UNIV MASSACHUSETTS,SCH MED,DEPT MOLEC GENET & MICROBIOL,55 LAKE AVE N,WORCESTER,MA 01655
关键词
D O I
10.1093/nar/21.17.4133
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Saccharomyces cerevisiae general regulatory factor CP1, a helix-loop-helix protein that binds the centromere DNA element I (CDEI) of yeast centromeres, is required in yeast for optimal centromere function and for methionine prototrophy. Mutant alleles of CEP1, the gene encoding CP1, were generated by linker insertion, 5'- and 3'-deletion, and random mutagenesis and assayed for DNA binding activity and their ability to confer CP1 function when expressed in yeast. A heterologous CDEI-binding protein, TFEB, was also tested for CP1 function. The results suggested that DNA binding is required for both biological functions of CP1 but is not sufficient. A direct and quantitative correlation was observed between the chromosome loss and nutritional (i.e., Met) phenotypes of strains carrying loss of function alleles, but qualitatively the chromosome loss phenotype was more sensitive to decreased CP1 expression. The data are consistent with a model in which CP1 performs the same general chromatin-related function at centromeres and MET gene promoters and is normally present in functional excess.
引用
收藏
页码:4133 / 4141
页数:9
相关论文
共 35 条
[1]  
BAKER RE, 1986, J BIOL CHEM, V261, P5275
[2]  
BAKER RE, 1989, J BIOL CHEM, V264, P10843
[3]   ISOLATION OF THE GENE ENCODING THE SACCHAROMYCES-CEREVISIAE CENTROMERE-BINDING PROTEIN CP1 [J].
BAKER, RE ;
MASISON, DC .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (06) :2458-2467
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   ISOLATION OF A SACCHAROMYCES-CEREVISIAE CENTROMERE DNA-BINDING PROTEIN, ITS HUMAN HOMOLOG, AND ITS POSSIBLE ROLE AS A TRANSCRIPTION FACTOR [J].
BRAM, RJ ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (01) :403-409
[6]   2 DNA-BINDING FACTORS RECOGNIZE SPECIFIC SEQUENCES AT SILENCERS, UPSTREAM ACTIVATING SEQUENCES, AUTONOMOUSLY REPLICATING SEQUENCES, AND TELOMERES IN SACCHAROMYCES-CEREVISIAE [J].
BUCHMAN, AR ;
KIMMERLY, WJ ;
RINE, J ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (01) :210-225
[7]   A YEAST ARS-BINDING PROTEIN ACTIVATES TRANSCRIPTION SYNERGISTICALLY IN COMBINATION WITH OTHER WEAK ACTIVATING FACTORS [J].
BUCHMAN, AR ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (03) :887-897
[8]   YEAST CENTROMERE BINDING PROTEIN-CBF1, OF THE HELIX-LOOP-HELIX PROTEIN FAMILY, IS REQUIRED FOR CHROMOSOME STABILITY AND METHIONINE PROTOTROPHY [J].
CAI, MJ ;
DAVIS, RW .
CELL, 1990, 61 (03) :437-446
[9]   A HELIX-LOOP-HELIX PROTEIN RELATED TO THE IMMUNOGLOBULIN-E BOX-BINDING PROTEINS [J].
CARR, CS ;
SHARP, PA .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (08) :4384-4388
[10]   A YEAST PROTEIN THAT INFLUENCES THE CHROMATIN STRUCTURE OF UASG AND FUNCTIONS AS A POWERFUL AUXILIARY GENE ACTIVATOR [J].
CHASMAN, DI ;
LUE, NF ;
BUCHMAN, AR ;
LAPOINTE, JW ;
LORCH, Y ;
KORNBERG, RD .
GENES & DEVELOPMENT, 1990, 4 (04) :503-514