PHOTON-NUMBER CORRELATIONS NEAR THE THRESHOLD OF MICROCAVITY LASERS IN THE WEAK-COUPLING REGIME

被引:55
作者
JIN, R
BOGGAVARAPU, D
SARGENT, M
MEYSTRE, P
GIBBS, HM
KHITROVA, G
机构
[1] Optical Sciences Center, University of Arizona, Tucson
来源
PHYSICAL REVIEW A | 1994年 / 49卷 / 05期
关键词
D O I
10.1103/PhysRevA.49.4038
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The quantum-noise properties near the threshold of microcavity lasers are studied theoretically and experimentally in the weak-coupling regime. Computations based on two-level quantum theory show that the microlasers exhibit a high degree of second-order coherence compared with conventional lasers as a result of the suppression of spontaneous emission into nonlasing modes, and that there always exists a finite threshold for these lasers defined by the peak of the photon-number correlation function corresponding to the spontaneous-to-stimulated transition.
引用
收藏
页码:4038 / 4042
页数:5
相关论文
共 33 条
[1]  
[Anonymous], 1956, NATURE
[2]   STATISTICS ON LASER RADIATION AT THRESHOLD [J].
ARECCHI, FT ;
RODARI, GS ;
SONA, A .
PHYSICS LETTERS A, 1967, A 25 (01) :59-+
[3]   INTENSITY FLUCTUATIONS IN A GAAS LASER [J].
ARMSTRONG, JA ;
SMITH, AW .
PHYSICAL REVIEW LETTERS, 1965, 14 (03) :68-+
[4]  
BADA T, 1991, IEEE J QUANTUM ELECT, V27, P1347
[5]   CORRELATION BETWEEN PHOTONS IN 2 COHERENT BEAMS OF LIGHT [J].
BROWN, RH ;
TWISS, RQ .
NATURE, 1956, 177 (4497) :27-29
[6]   ANALOGY BETWEEN LASER THRESHOLD REGION AND A SECOND-ORDER PHASE TRANSITION [J].
DEGIORGIO, V ;
SCULLY, MO .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 2 (04) :1170-+
[7]   ANOMALOUS SPONTANEOUS STIMULATED-DECAY PHASE-TRANSITION AND ZERO-THRESHOLD LASER ACTION IN A MICROSCOPIC CAVITY [J].
DEMARTINI, F ;
JACOBOVITZ, GR .
PHYSICAL REVIEW LETTERS, 1988, 60 (17) :1711-1714
[8]   PHOTON CORRELATIONS [J].
GLAUBER, RJ .
PHYSICAL REVIEW LETTERS, 1963, 10 (03) :84-+
[9]   LASERLIGHT - FIRST EXAMPLE OF A SECOND-ORDER TRANSITION FAR AWAY FROM THERMAL EQUILIBRIUM [J].
GRAHAM, R ;
HAKEN, H .
ZEITSCHRIFT FUR PHYSIK, 1970, 237 (01) :31-+
[10]  
Haroche S., 1992, FUNDAMENTAL SYSTEMS