MOBIUS INVARIANCE OF KNOT ENERGY

被引:12
作者
BRYSON, S
FREEDMAN, MH
HE, ZX
WANG, ZH
机构
[1] UNIV CALIF SAN DIEGO,DEPT MATH,LA JOLLA,CA 92093
[2] PRINCETON UNIV,DEPT MATH,PRINCETON,NJ 08544
关键词
D O I
10.1090/S0273-0979-1993-00348-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A physically natural potential energy for simple closed curves in R3 is shown to be invariant under Mobius transformations. This leads to the rapid resolution of several open problems: round circles are precisely the absolute minima for energy; there is a minimum energy threshold below which knotting cannot occur; minimizers within prime knot types exist and are regular. Finally, the number of knot types with energy less than any constant M is estimated.
引用
收藏
页码:99 / 103
页数:5
相关论文
共 8 条
[1]  
AHARA K, 1990, AUG TOP C
[2]  
FREEDMAN MH, IN PRESS ENERGY KNOT
[3]   ENERGY OF A KNOT [J].
OHARA, J .
TOPOLOGY, 1991, 30 (02) :241-247
[4]  
OHARA J, IN PRESS ENERGY FUNC
[5]  
OHARA J, IN PRESS TOPOLOGY AP
[6]  
SUMNERS D, 1987, MATH P CAMBRIDGE PHI, V102, P303
[7]   A CENSUS OF PLANAR MAPS [J].
TUTTE, WT .
CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (02) :249-&
[8]  
WELSH DJA, NUMBER KNOTS