SOME OPTIMUM PROPERTIES OF RANKING PROCEDURES

被引:36
作者
EATON, ML
机构
来源
ANNALS OF MATHEMATICAL STATISTICS | 1967年 / 38卷 / 01期
关键词
D O I
10.1214/aoms/1177699063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:124 / &
相关论文
共 27 条
[1]  
ANDERSON TW, INDRODUCTION MULTIVA
[2]   ON A PROBLEM IN THE THEORY OF K-POPULATIONS [J].
BAHADUR, RR .
ANNALS OF MATHEMATICAL STATISTICS, 1950, 21 (03) :362-375
[3]   THE PROBLEM OF THE GREATER MEAN [J].
BAHADUR, RR ;
ROBBINS, H .
ANNALS OF MATHEMATICAL STATISTICS, 1950, 21 (04) :469-487
[4]   IMPARTIAL DECISION RULES AND SUFFICIENT STATISTICS [J].
BAHADUR, RR ;
GOODMAN, LA .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04) :553-562
[5]   A SINGLE-SAMPLE MULTIPLE DECISION PROCEDURE FOR RANKING VARIANCES OF NORMAL POPULATIONS [J].
BECHHOFER, RE ;
SOBEL, M .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (02) :273-289
[6]   A SINGLE-SAMPLE MULTIPLE DECISION PROCEDURE FOR RANKING MEANS OF NORMAL POPULATIONS WITH KNOWN VARIANCES [J].
BECHHOFER, RE .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (01) :16-39
[7]   A 2-SAMPLE MULTIPLE DECISION PROCEDURE FOR RANKING MEANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN VARIANCE [J].
BECHHOFER, RE ;
DUNNETT, CW ;
SOBEL, M .
BIOMETRIKA, 1954, 41 (1-2) :170-176
[8]   A SINGLE-SAMPLE MULTIPLE-DECISION PROCEDURE FOR SELECTING THE MULTINOMIAL EVENT WHICH HAS THE HIGHEST PROBABILITY [J].
BECHHOFER, RE ;
ELMAGHRABY, S ;
MORSE, N .
ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (01) :102-119
[9]  
BECHHOFER RE, UNPUBLISHED MANUSCRI
[10]  
DUNNETT CW, 1960, J ROY STAT SOC B, V22, P1