THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION

被引:453
作者
CAFFARELLI, L
NIRENBERG, L
SPRUCK, J
机构
[1] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
[2] CUNY BROOKLYN COLL,BROOKLYN,NY 11210
关键词
D O I
10.1002/cpa.3160370306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:369 / 402
页数:34
相关论文
共 25 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]   REAL MONGE-AMPERE EQUATIONS [J].
AUBIN, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 41 (03) :354-377
[3]  
Calabi E., 1958, MICHIGAN MATH J, V5, P105, DOI 10.1307/mmj/1028998055
[4]   REGULARITY OF MONGE-AMPERE EQUATION DET (D2U/DXIDXJ) = F(X,U) [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :41-68
[5]  
CHENG SY, 1982, REAL MONGE AMPERE EQ, V1, P339
[6]  
CHENG SY, 1976, COMMUN PUR APPL MATH, V19, P495
[7]  
Evans L. C., 1982, COMMUN PUR APPL MATH, V35, P333
[8]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[9]  
IVOCHKINA N. M., 1980, ZAP NAUCHN SEM LENIN, V96, P69
[10]  
Krylov N. V., 1983, IZV AKAD NAUK SSSR M, V47, P75