BIVALENT-METAL BINDING TO CHEY PROTEIN - EFFECT ON PROTEIN CONFORMATION

被引:18
作者
KAR, L
MATSUMURA, P
JOHNSON, ME
机构
[1] UNIV ILLINOIS, DEPT MEDICINAL CHEM & PHARMACOGNOSY, POB 6998, CHICAGO, IL 60680 USA
[2] UNIV ILLINOIS, DEPT MICROBIOL & IMMUNOL, CHICAGO, IL 60680 USA
关键词
D O I
10.1042/bj2870521
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CheY is a 14 kDa cytoplasmic protein that is activated by the transfer of a phosphoryl moiety to Asp-57 from phosphoCheA during signal transduction in bacterial chemotaxis. It has been established that metal ions are necessary for the autophosphorylation of CheA, the transfer of phosphate from phosphoCheA to CheY and the auto-dephosphorylation of phosphoCheY. In this work, paramagnetic relaxation enhancement has been used in conjunction with one- and two-dimensional n.m.r. to study the interaction of CheY with bivalent metal ions. These studies have led to the discovery of two conformations of the protein in water, corresponding to the metal-free and the metal-bound states. Binding of bivalent cations like Mg2+, Ca2+, Sr2+, Zn2+ and Mn2+ results in a conformational change from the metal-free to the metal-bound state. Preliminary assignments of the aromatic proton resonances are reported. Comparison of phase-sensitive double-quantum-filtered COSY, homonuclear Hartmann-Hahn coherence transfer and nuclear Overhauser enhancement spectra from the metal-bound and metal-free protein indicates that Trp-58, Thr-87 and Tyr-106 are particularly affected by the conformational change involved, and that this change is limited to a small number of residues. In addition, homonuclear Hartmann-Hahn coherence transfer experiments with paramagnetic Mn2+ show significant suppression of cross-peaks associated with Trp-58 and several neighbouring residues. Comparison of the distances estimated using n.m.r. with the CheY crystal structure indicates that the n.m.r. results are consistent with bivalent metal binding at the cluster of aspartic acid residues that includes Asp-13 and Asp-57. These studies also demonstrate the utility of paramagnetic metal-induced relaxation in conjunction with two-dimensional n.m.r. measurements for exploring ligand-binding sites.
引用
收藏
页码:521 / 531
页数:11
相关论文
共 29 条
[1]   MLEV-17-BASED TWO-DIMENSIONAL HOMONUCLEAR MAGNETIZATION TRANSFER SPECTROSCOPY [J].
BAX, A ;
DAVIS, DG .
JOURNAL OF MAGNETIC RESONANCE, 1985, 65 (02) :355-360
[2]  
BERTINI I, 1989, METHOD ENZYMOL, V177, P246
[3]   CONSERVED ASPARTATE RESIDUES AND PHOSPHORYLATION IN SIGNAL TRANSDUCTION BY THE CHEMOTAXIS PROTEIN CHEY [J].
BOURRET, RB ;
HESS, JF ;
SIMON, MI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (01) :41-45
[4]   SIGNAL TRANSDUCTION PATHWAYS INVOLVING PROTEIN-PHOSPHORYLATION IN PROKARYOTES [J].
BOURRET, RB ;
BORKOVICH, KA ;
SIMON, MI .
ANNUAL REVIEW OF BIOCHEMISTRY, 1991, 60 :401-441
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   COHERENCE TRANSFER BY ISOTROPIC MIXING - APPLICATION TO PROTON CORRELATION SPECTROSCOPY [J].
BRAUNSCHWEILER, L ;
ERNST, RR .
JOURNAL OF MAGNETIC RESONANCE, 1983, 53 (03) :521-528
[7]   H-1-NMR PARAMETERS OF THE COMMON AMINO-ACID RESIDUES MEASURED IN AQUEOUS-SOLUTIONS OF THE LINEAR TETRAPEPTIDES H-GLY-GLY-X-L-ALA-OH [J].
BUNDI, A ;
WUTHRICH, K .
BIOPOLYMERS, 1979, 18 (02) :285-297
[8]   FLUORESCENCE AND LOCATION OF TRYPTOPHAN RESIDUES IN PROTEIN MOLECULES [J].
BURSTEIN, EA ;
VEDENKINA, NS ;
IVKOVA, MN .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1973, 18 (04) :263-279
[9]  
CANTOR CR, 1980, BIOPHYSICAL CHEM 3, P920
[10]  
FERSHT A, 1985, ENZYME STRUCTURE MEC, P190