ORBITS STABILITY AND DIMENSIONAL CRITICALITY OF CANTOR SETS

被引:6
作者
ELNASCHIE, MS
机构
[1] Department of Applied Mathematics and Theoretical Physics University of Cambridge Silver Street
关键词
D O I
10.1016/0893-9659(94)90038-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A theorem is presented connecting Golden KAM orbits and the median Hausdorff dimension of a backbone Cantor set at the point of dimensional criticality.
引用
收藏
页码:91 / 94
页数:4
相关论文
共 10 条
[1]  
Mackay, Meiss, Hamiltonian Dynamical Systems, (1987)
[2]  
El Naschie, Quantum mechanics, Cantorian space-time and the Heisenberg uncertainty principle, Vista in Astronomy, 37, pp. 249-252, (1993)
[3]  
El Naschie, Statistical mechanics of multidimensional Cantor sets, Gödel theorem and quantum space-time, J. Franklin Institute, 330, 1, pp. 199-211, (1993)
[4]  
El Naschie, Internal Cantor distance and entropy of multidimensional Peano-Hilbert space, Chaos, Solitons and Fractals, 3, 3, pp. 362-368, (1993)
[5]  
El Naschie, Complex dynamics in a 4D Peano-Hilbert space, Il Nuovo Cimento, 107 B, (1992)
[6]  
El Naschie, Cantorian distance, statistical mechanics and universal behaviour of multidimensional triadic sets, Mathl. Comput. Modelling, 17, 6, pp. 47-53, (1993)
[7]  
Koyama, Hara, Scaled Langevin equation to describe the 1/f<sup>α</sup> spectrum, Phys. Rev. A, 46, 4, pp. 1844-1849, (1992)
[8]  
Greene, A method for determining a stochastic transition, Journal of Mathematical Physics, 20, pp. 1183-1201, (1979)
[9]  
Ruelle, Takens, On the nature of turbulence, Commun. Math. Phys., 20, pp. 167-192, (1971)
[10]  
Kube, Roessler, Hudson, A “superfat” chaotic attractor, Chaos, Solitons and Fractals, 3, 2, pp. 141-148, (1993)