HYDROPHOBICITY AND STABILITY FOR A FAMILY OF MODEL PROTEINS

被引:16
作者
MULLER, N
机构
[1] Department of Chemistry, Purdue University, West Lafayette, Indiana
关键词
D O I
10.1002/bip.360330805
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
According to the conventional definition, the hydrophobic effect is a result of thermodynamic changes occurring when a nonpolar group dissolves in water and attributable to the fact that water in contact with such a group has special structural and energetic properties. Disagreement now exists as to whether this effect promotes or hinders protein denaturation. Taking the heat capacity change of unfolding as a measure of the hydrophobicity of the protein interior, others have shown that protein stabilities are systematically affected by changes in hydrophobicity. It has been suggested that the observed trends show that hydrophobic hydration is intrinsically a destabilizing factor. Model calculations using known equations for the stability curves and certain simplifying assumptions now show that such regularities provide no evidence for or against this conclusion. All available data can be rationalized if hydrophobic terms are evaluated from models that require a positive hydrophobic contribution to the Gibbs energy of unfolding. The calculations also confirm the recent finding that any set of proteins with denaturation temperatures between about 330 and 380 K that exhibits entropy convergence at about 386 K is thermodynamically required to show enthalpy convergence at approximately the same temperature. (C) 1993 John Wiley & Sons, Inc.
引用
收藏
页码:1185 / 1193
页数:9
相关论文
共 34 条
[1]   THERMODYNAMIC ANALYSIS OF THE FOLDING OF THE STREPTOCOCCAL PROTEIN-G IGG-BINDING DOMAINS B1 AND B2 - WHY SMALL PROTEINS TEND TO HAVE HIGH DENATURATION TEMPERATURES [J].
ALEXANDER, P ;
FAHNESTOCK, S ;
LEE, T ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (14) :3597-3603
[3]   RELATION BETWEEN THE CONVERGENCE TEMPERATURES T(H)ASTERISK AND T(S)ASTERISK IN PROTEIN UNFOLDING [J].
BALDWIN, RL ;
MULLER, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (15) :7110-7113
[4]   PROTEIN STABILITY CURVES [J].
BECKTEL, WJ ;
SCHELLMAN, JA .
BIOPOLYMERS, 1987, 26 (11) :1859-1877
[5]   SOLVATION THERMODYNAMICS OF NONIONIC SOLUTES [J].
BENNAIM, A ;
MARCUS, Y .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (04) :2016-2027
[6]   Stability of folded conformations [J].
Creighton, Thomas E. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1991, 1 (01) :5-16
[7]   THE MEANING OF HYDROPHOBICITY [J].
DILL, KA .
SCIENCE, 1990, 250 (4978) :297-297
[8]   DOMINANT FORCES IN PROTEIN FOLDING [J].
DILL, KA .
BIOCHEMISTRY, 1990, 29 (31) :7133-7155
[9]  
DOIG AJ, 1991, J MOL BIOL, V217, P389, DOI 10.1016/0022-2836(91)90551-G
[10]  
DOIG AJ, 1992, BIOCHEMISTRY-US, V31, P9371, DOI 10.1021/bi00154a007