A LAW OF THE ITERATED LOGARITHM FOR DOUBLE ARRAYS OF INDEPENDENT RANDOM-VARIABLES WITH APPLICATIONS TO REGRESSION AND TIME-SERIES MODELS

被引:45
作者
LAI, TL [1 ]
WEI, CZ [1 ]
机构
[1] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
关键词
D O I
10.1214/aop/1176993860
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:320 / 335
页数:16
相关论文
共 11 条
[1]   STRONG CONSISTENCY OF LEAST-SQUARES ESTIMATES IN NORMAL LINEAR-REGRESSION [J].
ANDERSON, TW ;
TAYLOR, JB .
ANNALS OF STATISTICS, 1976, 4 (04) :788-790
[2]  
Doob J. L., 1953, STOCHASTIC PROCESSES, V101
[3]   STRONG CONSISTENCY OF LEAST-SQUARES ESTIMATES IN MULTIPLE-REGRESSION .2. [J].
LAI, TL ;
ROBBINS, H ;
WEI, CZ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1979, 9 (03) :343-361
[4]   LIMIT-THEOREMS FOR SUMS OF DEPENDENT RANDOM-VARIABLES [J].
LAI, TL ;
STOUT, W .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 51 (01) :1-14
[5]   LAW OF ITERATED LOGARITHM AND UPPER-LOWER CLASS TESTS FOR PARTIAL SUMS OF STATIONARY GAUSSIAN SEQUENCES [J].
LAI, TL ;
STOUT, W .
ANNALS OF PROBABILITY, 1978, 6 (05) :731-750
[6]   GENERAL MOMENT AND PROBABILITY INEQUALITIES FOR MAXIMUM PARTIAL SUM [J].
LONGNECKER, M ;
SERFLING, RJ .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1977, 30 (1-2) :129-133
[7]  
RAO CR, 1965, LINEAR STATISTICAL I
[8]  
Stout W. F., 1974, ALMOST SURE CONVERGE
[9]   LAW OF ITERATED LOGARITHM [J].
TEICHER, H .
ANNALS OF PROBABILITY, 1974, 2 (04) :714-728
[10]   LAW OF ITERATED LOGARITHM FOR DOUBLE SEQUENCES OF RANDOM VARIABLES [J].
TOMKINS, RJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 30 (04) :303-314