THE SHORTEST-PATH PROBLEM FOR GRAPHS WITH RANDOM ARC-LENGTHS

被引:168
作者
FRIEZE, AM [1 ]
GRIMMETT, GR [1 ]
机构
[1] UNIV BRISTOL,SCH MATH,BRISTOL BS8 1TW,AVON,ENGLAND
关键词
COMPUTER PROGRAMMING - Algorithms;
D O I
10.1016/0166-218X(85)90059-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of finding the shortest distance between all pairs of vertices in a complete digraph on n vertices, whose arc-lengths are non-negative random variables is considered. An algorithm is described which solves this problem in O(n(m plus n log n) expected time, where m is the expected number of arcs with finite length. The authors consider also the case when the arc-lengths are random variables which are independently distributed with distribution function F, where F(O) equals 0 and F is differentiable at 0; for this case, they describe an algorithm which runs in O(n**2 log n) expected time.
引用
收藏
页码:57 / 77
页数:21
相关论文
共 10 条
[1]  
Aho A. V., 1974, DESIGN ANAL COMPUTER, V1st
[3]  
BLONIARZ PA, 1979, 796 STAT U NEW YORK
[4]  
BLONIARZ PA, 1980, 803 STAT U NEW YORK
[5]  
Daley D. J., 1965, IMA J APPL MATH, V1, P42, DOI DOI 10.1093/IMAMAT/1.1.42
[6]  
Dijkstra EW., 1959, NUMER MATH, V1, P269, DOI DOI 10.1007/BF01386390
[7]   ALGORITHM-97 - SHORTEST PATH [J].
FLOYD, RW .
COMMUNICATIONS OF THE ACM, 1962, 5 (06) :345-345
[8]  
Fredman M. L., 1976, SIAM Journal on Computing, V5, P83, DOI 10.1137/0205006
[9]  
Grimmett G., 1982, PROBABILITY RANDOM P
[10]  
Spira P. M., 1973, SIAM Journal on Computing, V2, P28, DOI 10.1137/0202004