HOMOCLINIC BIFURCATIONS IN SLOW-FAST 2ND-ORDER SYSTEMS

被引:22
作者
KUZNETSOV, YA
MURATORI, S
RINALDI, S
机构
[1] POLITECN MILAN,CNR,CTR TEORIA SISTEMI,I-20133 MILAN,ITALY
[2] POLITECN MILAN,DIPARTIMENTO ELETTR,I-20133 MILAN,ITALY
关键词
HOMOCLINIC BIFURCATIONS; SINGULAR PERTURBATION; PREDATOR-PREY MODELS; CONTINUATION METHOD;
D O I
10.1016/0362-546X(94)E0005-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:747 / 762
页数:16
相关论文
共 28 条
[1]  
ANDRONOV AA, 1967, THEORY BIFURCATIONS
[2]  
ARNOLD VI, 1986, DYNAMICAL SYSTEMS, V5, P5
[3]  
BENOIT E, 1985, COLLECT MATH, V31
[4]  
BEYN WJ, 1990, CONTINUATION BIFURCA, P169
[5]   UNIQUENESS OF A LIMIT-CYCLE FOR A PREDATOR-PREY SYSTEM [J].
CHENG, KS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (04) :541-548
[6]  
DIENER F, 1983, CR ACAD SCI I-MATH, V297, P577
[7]  
DIENER F, 1979, IRMA197975P37 PUBL
[8]   NUMERICAL COMPUTATION AND CONTINUATION OF INVARIANT-MANIFOLDS CONNECTING FIXED-POINTS [J].
FRIEDMAN, MJ ;
DOEDEL, EJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :789-808
[9]  
Guckenheimer J., 1986, NONLINEAR OSCILLATIO
[10]  
HASTINGS A, 1990, ECOLOGY, V72, P896