RASCH MODELS IN LATENT CLASSES - AN INTEGRATION OF 2 APPROACHES TO ITEM ANALYSIS

被引:328
作者
ROST, J
机构
关键词
CONDITIONAL LIKELIHOOD; EM ALGORITHM; LATENT CLASS ANALYSIS; RASCH MODEL;
D O I
10.1177/014662169001400305
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
A model is proposed that combines the theoret ical strength of the Rasch model with the heuristic power of latent class analysis. It assumes that the Rasch model holds for all persons within a latent class, but it allows for different sets of item parameters between the latent classes. An estima tion algorithm is outlined that gives conditional maximum likelihood estimates of item parameters for each class. No a priori assumption about the item order in the latent classes or the class sizes is required. Application of the model is illustrated, both for simulated data and for real data. © 1990, Sage Publications. All rights reserved.
引用
收藏
页码:271 / 282
页数:12
相关论文
共 22 条
[1]   GOODNESS OF FIT TEST FOR RASCH MODEL [J].
ANDERSEN, EB .
PSYCHOMETRIKA, 1973, 38 (01) :123-140
[3]  
CLOGG C. C, 1988, LATENT TRAIT LATENT, V8, P173, DOI DOI 10.1007/978-1-4757-5644-9_9
[4]  
CLOGG CC, 1989, UNPUB SIMPLE LATENT
[5]  
CROON M, 1989, UNPUB LATENT CLASS A
[6]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[9]  
FORMANN AK, 1989, RES B U VIENNA, V29