EFFECTS OF NITROGEN NUTRITION ON NITROGEN PARTITIONING BETWEEN CHLOROPLASTS AND MITOCHONDRIA IN PEA AND WHEAT

被引:328
作者
MAKINO, A [1 ]
OSMOND, B [1 ]
机构
[1] DUKE UNIV,DEPT BOT,DURHAM,NC 27706
关键词
D O I
10.1104/pp.96.2.355
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Nitrogen partitioning among proteins in chloroplasts and mitochondria was examined in pea (Pisum sativum L.) and wheat (Triticum aestivum L.) grown hydroponically with different nitrogen concentrations. In pea leaves, chloroplast nitrogen accounted for 75 to 80% of total leaf nitrogen. We routinely found that 8% of total ribulose-1,5-bisphosphate carboxylase/oxygenase adhered to thylakoids during preparation and could be removed with Triton X-100. With this precaution, the ratio of stroma nitrogen increased from 53 to 61% of total leaf nitrogen in response to the nitrogen supply, but thylakoid nitrogen remained almost constant around 20% of total. The changes in the activities of the stromal enzymes and electron transport in response to the nitrogen supply reflected the nitrogen partitioning into stroma and thylakoids. On the other hand, nitrogen partitioning into mitochondria was appreciably smaller than that in chloroplasts, and the ratio of nitrogen allocated to mitochondria decreased with increasing leaf-nitrogen content, ranging from 7 to 4% of total leaf nitrogen. The ratio of mitochondrial respiratory enzyme activities to leaf-nitrogen content also decreased with increasing leaf-nitrogen content. These differences in nitrogen partitioning between chloroplasts and mitochondria were reflected in differences in the rates of photosynthesis and dark respiration in wheat leaves measured with an open gas-exchange system. The response of photosynthesis to nitrogen supply was much greater than that of dark respiration, and the CO2 compensation point decreased with increasing leaf-nitrogen content.
引用
收藏
页码:355 / 362
页数:8
相关论文
共 37 条
[1]  
[Anonymous], 1974, ESTIMATION CATALASE
[2]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[3]   EFFECT OF PHOTOSYNTHESIS AND CARBOHYDRATE STATUS ON RESPIRATORY RATES AND THE INVOLVEMENT OF THE ALTERNATIVE PATHWAY IN LEAF RESPIRATION [J].
AZCONBIETO, J ;
LAMBERS, H ;
DAY, DA .
PLANT PHYSIOLOGY, 1983, 72 (03) :598-603
[4]   RELATIONSHIP BETWEEN PHOTOSYNTHESIS AND RESPIRATION - THE EFFECT OF CARBOHYDRATE STATUS ON THE RATE OF CO2 PRODUCTION BY RESPIRATION IN DARKENED AND ILLUMINATED WHEAT LEAVES [J].
AZCONBIETO, J ;
OSMOND, CB .
PLANT PHYSIOLOGY, 1983, 71 (03) :574-581
[5]  
BERGMAN A, 1980, PLANT PHYSIOL, V66, P442, DOI 10.1104/pp.66.3.442
[7]   RESOLUTION AND CHARACTERIZATION OF THE GLYCINE-CLEAVAGE REACTION IN PEA LEAF MITOCHONDRIA - PROPERTIES OF THE FORWARD REACTION CATALYZED BY GLYCINE DECARBOXYLASE AND SERINE HYDROXYMETHYLTRANSFERASE [J].
BOURGUIGNON, J ;
NEUBURGER, M ;
DOUCE, R .
BIOCHEMICAL JOURNAL, 1988, 255 (01) :169-178
[8]  
BROWN RH, 1978, CROP SCI, V18, P19
[9]  
COOPER TG, 1969, J BIOL CHEM, V244, P3507
[10]  
COX GF, 1969, METHOD ENZYMOL, V13, P35