THE INFLUENCE OF VARIABLES IN PRODUCT-SPACES

被引:112
作者
BOURGAIN, J
KAHN, J
KALAI, G
KATZNELSON, Y
LINIAL, N
机构
[1] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
[2] HEBREW UNIV JERUSALEM,INST MATH & COMP SCI,LANDAU CTR RES MATH ANAL,IL-91904 JERUSALEM,ISRAEL
[3] STANFORD UNIV,DEPT MATH,STANFORD,CA 94305
关键词
D O I
10.1007/BF02808010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a probability space and let f : X(n) --> {0, 1} be a measurable map. Define the influence of the k-th variable on f, denoted by I(f)(k), as follows: For u = (u1, u2, ..., u(n-1)) is-an-element-of X(n-1) consider the set l(k)(u) = {(u1, U2, ..., u(k-1), t, u(k), ..., u(n-1)): t is-an-element-of X}. I(f)(k) = Pr(u is-an-element-of X(n-1) : f is not constant on l(k)(u)). More generally, for S a subset of [n] = {1, ..., n} let the influence of S on f, denoted by I(f)(S), be the probability that assigning values to the variables not in S at random, the value of f is undetermined. THEOREM 1: There is an absolute constant c1 so that for every function f: X(n) --> {0, 1}, with Pr(f-1(1)) = p less-than-or-equal-to 1/2, there is a variable k so that I(f)(k) greater-than-or-equal-to c1p log n/n. THEOREM 2: For every f : X(n) --> {0, 1}, with Prob(f = 1) = 1/2, and every epsilon > 0, there is S subset-of [n], \S\ = c2 (epsilon)n/log n so that I(f)(S) greater-than-or-equal-to 1 - epsilon. These extend previous results by Kahn, Kalai and Linial for Boolean functions, i.e., the case X = {0, 1}.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 9 条
[1]   ON THE DENSITY OF SETS OF VECTORS [J].
ALON, N .
DISCRETE MATHEMATICS, 1983, 46 (02) :199-202
[2]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[3]  
BEN-OR M., 1990, RANDOMNESS COMPUTATI, P91
[4]  
Bollobas B., 1986, COMBINATORICA
[5]  
CHOR B, 1988, SIAM J DISCRETE MATH, V1, P411
[6]  
Frankl P., 1987, SURV COMB, V123, P81
[7]  
Kahn J., 1988, 29th Annual Symposium on Foundations of Computer Science (IEEE Cat. No.88CH2652-6), P68, DOI 10.1109/SFCS.1988.21923
[8]  
KAHN J, IN PRESS COLLECTIVE
[9]   AN INEQUALITY RELATED TO THE ISOPERIMETRIC INEQUALITY [J].
LOOMIS, LH ;
WHITNEY, H .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (10) :961-962