BAYESIAN DENSITY-ESTIMATION AND INFERENCE USING MIXTURES

被引:1377
作者
ESCOBAR, MD
WEST, M
机构
[1] UNIV TORONTO,DEPT PREVENT MED & BIOSTAT,TORONTO,ON M5S 1A8,CANADA
[2] DUKE UNIV,INST STAT & DECIS SCI,DURHAM,NC 27708
关键词
KERNEL ESTIMATION; MIXTURES OF DIRICHLET PROCESSES; MULTIMODALITY; NORMAL MIXTURES; POSTERIOR SAMPLING; SMOOTHING PARAMETER ESTIMATION;
D O I
10.2307/2291069
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models provide natural settings for density estimation and are exemplified by special eases where data are modeled as a sample from mixtures of normal distributions. Efficient simulation methods are used to approximate various prior, posterior, and predictive distributions. This allows for direct inference on a variety of practical issues, including problems of local versus global smoothing, uncertainty about density estimates, assessment of modality, and the inference on the numbers of components. Also, convergence results are established for a general class of normal mixture models.
引用
收藏
页码:577 / 588
页数:12
相关论文
empty
未找到相关数据