OPTIMAL RATE OF CONVERGENCE FOR FINITE MIXTURE-MODELS

被引:139
作者
CHEN, JH
机构
关键词
LOCAL ASYMPTOTIC NORMALITY; MAXIMUM LIKELIHOOD ESTIMATE; MINIMUM DISTANCE; MIXING DISTRIBUTION; MIXTURE MODEL; RATE OF CONVERGENCE; STRONG IDENTIFIABILITY;
D O I
10.1214/aos/1176324464
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In finite mixture models, we establish the best possible rate of convergence for estimating the mixing distribution. We find that the key for estimating the mixing distribution is the knowledge of the number of components in the mixture. While a root n-consistent rate is achievable when the exact number of components is known, the best possible rate is only n(-1/4) when it is unknown. Under a strong identifiability condition, it is shown that this rate is reached by some minimum distance estimators. Most commonly used models are found to satisfy the strong identifiability condition.
引用
收藏
页码:221 / 233
页数:13
相关论文
共 11 条
[1]   OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY [J].
CARROLL, RJ ;
HALL, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) :1184-1186
[2]   CONSTRUCTION OF SEQUENCES ESTIMATING MIXING DISTRIBUTION [J].
DEELY, JJ ;
KRUSE, RL .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (01) :286-&
[3]   ON THE OPTIMAL RATES OF CONVERGENCE FOR NONPARAMETRIC DECONVOLUTION PROBLEMS [J].
FAN, JQ .
ANNALS OF STATISTICS, 1991, 19 (03) :1257-1272
[4]  
HAJEK J, 1972, 6TH P BERK S MATH ST, V1, P175
[5]  
IBRAGIMOV IA, 1981, STATISTICAL ESTIMATI
[6]   CONSISTENCY OF THE MAXIMUM-LIKELIHOOD ESTIMATOR IN THE PRESENCE OF INFINITELY MANY INCIDENTAL PARAMETERS [J].
KIEFER, J ;
WOLFOWITZ, J .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (04) :887-906
[7]   CONSISTENCY OF MAXIMUM-LIKELIHOOD ESTIMATORS FOR CERTAIN NONPARAMETRIC FAMILIES, IN PARTICULAR - MIXTURES [J].
PFANZAGL, J .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1988, 19 (02) :137-158
[8]  
TEICHER H, 1961, ANN MATH STAT, V32, P244, DOI 10.1214/aoms/1177705155
[9]  
Titterington D. M., 1990, STATISTICS, V21, P619, DOI DOI 10.1080/02331889008802274
[10]  
TITTERINGTON DM, 1985, STATISTICAL ANAL FIN