SPACE OF TEST FUNCTIONS FOR HIGHER-ORDER FIELD-THEORIES

被引:9
作者
BOLLINI, CG
OXMAN, LE
ROCCA, M
机构
[1] UNIV BUENOS AIRES,FAC CIENCIAS EXACTAS & NAT,DEPT FIS,RA-1428 BUENOS AIRES,DF,ARGENTINA
[2] NATL UNIV LA PLATA,FAC CIENCIAS EXACTAS,DEPT FIS,RA-1900 LA PLATA,ARGENTINA
关键词
D O I
10.1063/1.530862
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fundamental space zeta is defined as the set of entire analytic functions [test functions phi(z)], which are rapidly decreasing on the real axis. The variable z corresponds to the complex energy plane. The conjugate or dual space zeta' is the set of continuous linear functionals (distributions) on zeta. Among those distributions are the propagators, determined by the poles implied by the equations of motion and the contour of integration implied by the boundary conditions. All propagators can be represented as linear combinations of elementary (one pole) functionals. The algebra of convolution products is also determined. The Fourier transformed space ($) over tilde zeta contains test functions ($) over tilde phi(x). These functions are extra-rapidly decreasing, so that the exponentially increasing solutions of higher-order equations are distributions on ($) over tilde zeta.
引用
收藏
页码:4429 / 4438
页数:10
相关论文
共 16 条
[1]   THE TACHYON PROPAGATOR [J].
BARCI, DG ;
BOLLINI, CG ;
ROCCA, M .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1993, 106 (05) :603-609
[2]  
BARCI DG, 1991, TACHYONS HIGHER ORDE
[3]  
BOGOLUBOV NN, 1975, AXIOMATIC QUANTUM FI
[4]   UNITARITY AND COMPLEX MASS FIELDS [J].
BOLLINI, CG ;
OXMAN, LE .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (18) :3185-3198
[5]   PROPAGATOR FOR COMPLEX-MASS FIELDS [J].
BOLLINI, CG ;
OXMAN, LE .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (27) :6845-6855
[6]  
ERDELYI A, 1953, INTEGRAL TRANSFORMS
[7]  
GELFAND IM, 1968, GENERALIZED FUNCTION, V1, pCH2
[8]  
GELFAND IM, 1968, GEN FUNCT, V2, pCH4
[9]  
Gradshteyn I.S., 1965, TABLES OF INTEGRALS
[10]  
HASUMI M, 1961, TOHOKU MATH J, V13, P94