ASYMPTOTICS FOR THE MINIMIZATION OF A GINZBURG-LANDAU FUNCTIONAL

被引:292
作者
BETHUEL, F
BREZIS, H
HELEIN, F
机构
[1] ENPC, CERMA, F-93167 NOISY LE GRAND, FRANCE
[2] CMLA, ENS CACHAN, F-94235 CACHAN, FRANCE
[3] UNIV P&M CURIE, F-75252 PARIS 05, FRANCE
[4] RUTGERS UNIV, DEPT MATH, NEW BRUNSWICK, NJ 08903 USA
关键词
Mathematics subject classification: 35B25; 35B40; 35J55; 35J60;
D O I
10.1007/BF01191614
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let OMEGA subset-of R2 be a smooth bounded simply connected domain. Consider the functional E(epsilon)(u) = 1/2 integral-OMEGA \delu\2 + 1/4epsilon2 integral-OMEGA (Absolute value of u2 - 1)2 on the class H(g)1 = {u is-an-element-of H-1 (OMEGA; C); u = g on partial derivative OMEGA} where g: partial derivative OMEGA --> C is a prescribed smooth map with Absolute value of g = 1 on partial derivative OMEGA and deg(g, partial derivative) = 0. Let u(epsilon) be a minimizer for E(epsilon) on H(g)1. We prove that u(epsilon) --> u0 in C1,alpha(OMEGABAR) as epsilon --> 0, where u0 is identified. Moreover \\u(epsilon) - u0\\Linfinity less-than-or-equal-to C(epsilon)2.
引用
收藏
页码:123 / 148
页数:26
相关论文
共 11 条
[1]  
BETHUEL F, 1992, CR ACAD SCI I-MATH, V314, P891
[2]  
BETHUEL F, IN PRESS GINZBURG LA
[3]  
Gilbarg Davis, 1982, ELLIPTIC PARTIAL DIF, Vsecond
[4]  
HELEIN F, 1990, CR ACAD SCI I-MATH, V311, P519
[5]  
Kosterlitz J.M., 1978, PROGR LOW TEMPERAT B, VVIIB
[6]  
Morrey C. B., 1966, GRUNDLEHREN MATH WIS, V130
[7]   THE PROBLEM OF PLATEAU ON A RIEMANNIAN MANIFOLD [J].
MORREY, CB .
ANNALS OF MATHEMATICS, 1948, 49 (04) :807-851
[8]  
NELSON DR, 1983, PHASE TRANSITIONS CR, V7
[9]  
NIRENBERG L, 1959, ANN SCUOL NORM SUP P, V13, P116
[10]  
Saint-James D., 1969, TYPE 2 SUPERCONDUCTI