The method of moments iterative approach is applied to find the mean and autocorrelation of the solution to a random boundary value problem of the form Y**(**r**) plus Q//1(t)Y**(**r**/**2**) plus Q//2(t)Y**(**r**/**2** minus **1**) plus . . . plus Q//r/////2// plus //1(t)Y equals F(t), Y(0) equals Y prime (0) equals . . . equals Y**(**r**/**2** minus **1**)(0) equals 0, Y(1) equals Y prime (1) equals . . . equals Y**(**r**/**2** minus **1**)(1) equals 0, where r is even and Q//1,. . . , Q//r/////2// plus //1, F belong to a class of sstochastic processes defined here as ″discretizable processes″ . Examples are given to illustrate the practical application of the theory for a second order random differential equation.