METHOD OF MOMENTS FOR LINEAR RANDOM BOUNDARY-VALUE PROBLEMS

被引:7
作者
LAX, MD [1 ]
机构
[1] SO ILLINOIS UNIV,DEPT MATH,CARBONDALE,IL 62901
关键词
PROBABILITY - Random Processes;
D O I
10.1137/0131007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The method of moments iterative approach is applied to find the mean and autocorrelation of the solution to a random boundary value problem of the form Y**(**r**) plus Q//1(t)Y**(**r**/**2**) plus Q//2(t)Y**(**r**/**2** minus **1**) plus . . . plus Q//r/////2// plus //1(t)Y equals F(t), Y(0) equals Y prime (0) equals . . . equals Y**(**r**/**2** minus **1**)(0) equals 0, Y(1) equals Y prime (1) equals . . . equals Y**(**r**/**2** minus **1**)(1) equals 0, where r is even and Q//1,. . . , Q//r/////2// plus //1, F belong to a class of sstochastic processes defined here as ″discretizable processes″ . Examples are given to illustrate the practical application of the theory for a second order random differential equation.
引用
收藏
页码:62 / 83
页数:22
相关论文
共 5 条
  • [1] Cole R. H., 1968, THEORY ORDINARY DIFF
  • [2] LAX MD, TO BE PUBLISHED
  • [3] Sagan H, 1961, BOUNDARY EIGENVALUE
  • [4] Schechter M., 1971, GRADUATE STUDIES MAT
  • [5] [No title captured]