NATURAL METAMERS

被引:52
作者
DREW, MS
FUNT, BV
机构
[1] School of Computing Science, Simon Fraser University, Vancouver
来源
CVGIP-IMAGE UNDERSTANDING | 1992年 / 56卷 / 02期
关键词
D O I
10.1016/1049-9660(92)90036-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given only a color camera's RGB measurement of a complete color signal spectrum, how can the spectrum be estimated? We propose and test a new method that answers this question and recovers an approximating spectrum. Although this approximation has intrinsic interest, our main focus is on using it to generate tristimulus values for color reproduction. In essence, this provides a new method of converting color camera signals to tristimulus coordinates, because a spectrum defines a unique point in tristimulus coordinates. Color reproduction is founded on producing spectra that are metamers to those appearing in the original scene. Once a spectrum's tristimulus coordinates are known, generating a metamer is a well defined problem. Unfortunately, most color cameras cannot produce the necessary tristimulus coordinates directly because their color separation filters are not related by a linear transformation to the human color-matching functions. Color cameras are more likely to reproduce colors that look correct to the camera than to a human observer. Conversion from camera RGB triples to tristimulus values will always involve some type of estimation procedure unless cameras are redesigned. We compare the accuracy of our conversion strategy to that of one based on Horn's work on the exact reproduction of colored images. Our new method relies on expressing the color signal spectrum in terms of a linear combination of basis functions. The results show that a principal component analysis in color-signal space yields the best basis for our purposes, since using it leads to the most "natural" color signal spectrum that is statistically likely to have generated a given camera signal. © 1992.
引用
收藏
页码:139 / 151
页数:13
相关论文
共 31 条
[1]   EMPIRICAL MODELING OF SYSTEMATIC SPECTROPHOTOMETRIC ERRORS [J].
BERNS, RS ;
PETERSEN, KH .
COLOR RESEARCH AND APPLICATION, 1988, 13 (04) :243-256
[2]   VISUAL PIGMENTS OF RODS AND CONES IN A HUMAN RETINA [J].
BOWMAKER, JK ;
DARTNALL, HJA .
JOURNAL OF PHYSIOLOGY-LONDON, 1980, 298 (JAN) :501-511
[3]   BLACK LIGHT - HOW SENSORS FILTER SPECTRAL VARIATION OF THE ILLUMINANT [J].
BRAINARD, DH ;
WANDELL, BA ;
COWAN, WB .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1989, 36 (01) :140-149
[4]  
BRAINARD DH, 1989, IEEE T BIO-MED ENG, V36, P572
[5]   TRICHROMACY, OPPONENT COLORS CODING AND OPTIMUM COLOR INFORMATION-TRANSMISSION IN THE RETINA [J].
BUCHSBAUM, G ;
GOTTSCHALK, A .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1983, 220 (1218) :89-113
[6]   CHROMATICITY COORDINATES OF FREQUENCY-LIMITED FUNCTIONS [J].
BUCHSBAUM, G ;
GOTTSCHALK, A .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1984, 1 (08) :885-887
[7]   DEPENDENCY OF THE SPECTRAL REFLECTANCE CURVES OF THE MUNSELL-COLOR CHIPS [J].
COHEN, J .
PSYCHONOMIC SCIENCE, 1964, 1 (12) :369-370
[8]   SPECTRAL DISTRIBUTION OF AUSTRALIAN DAYLIGHT [J].
DIXON, ER .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (04) :437-450
[9]   COLOR FROM BLACK AND WHITE [J].
FUNT, B ;
HO, JA .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1989, 3 (02) :109-117
[10]   HOW TO DERIVE A SPECTRUM FROM AN RGB TRIPLET [J].
GLASSNER, AS .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1989, 9 (04) :95-99