EIGENFUNCTIONS OF THE CURL OPERATOR IN SPHERICAL COORDINATES

被引:17
作者
DELCASTILLO, GFT
机构
[1] Departamento de Física Matemática, Institute de Ciencias, Universidad Autónoma de Puebla, 72000 Puebla, Pue.
关键词
D O I
10.1063/1.530740
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The eigenfunctions of the curl operator are obtained by separation of variables in spherical coordinates, making use of the spin-weighted spherical harmonics. It is shown that the eigenfunctions of the curl operator with vanishing divergence can be written in terms of a single scalar potential that satisfies the Helmholtz equation. It is also shown that these eigenfunctions give a complete basis for the divergenceless vector fields.
引用
收藏
页码:499 / 507
页数:9
相关论文
共 13 条
[1]   ON FORCE-FREE MAGNETIC FIELDS [J].
CHANDRASEKHAR, S ;
KENDALL, PC .
ASTROPHYSICAL JOURNAL, 1957, 126 (02) :457-460
[2]  
DELCASTILLO GFT, 1992, REV MEX FIS, V38, P863
[3]  
DELCASTILLO GFT, 1992, REV MEX FIS, V38, P19
[4]  
DELCASTILLO GFT, 1992, REV MEX FIS, V38, P162
[5]  
DELCASTILLO GFT, 1993, REV MEX FIS, V39, P32
[6]  
DELCASTILLO GFT, 1991, REV MEX FIS, V37, P147
[7]   THE RELATIONSHIP BETWEEN MONOPOLE HARMONICS AND SPIN-WEIGHTED SPHERICAL-HARMONICS [J].
DRAY, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (05) :1030-1033
[8]   SPIN-S SPHERICAL HARMONICS AND EDTH [J].
GOLDBERG, JN ;
MACFARLA.AJ ;
NEWMAN, ET ;
ROHRLICH, F ;
SUDARSHA.CG .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (11) :2155-&
[9]  
Morse PM, 1953, METHODS THEORETICAL, V2