THRESHOLD OF GLOBAL STOCHASTICITY AND UNIVERSALITY IN HAMILTONIAN-SYSTEMS

被引:16
作者
ESCANDE, DF
MOHAMEDBENKADDA, MS
DOVEIL, F
机构
[1] UNIV TEXAS,CTR STUDIES STAT MECH,AUSTIN,TX 78712
[2] ECOLE POLYTECH,PHYS MILIEUX IONISES LAB,F-91128 PALAISEAU,FRANCE
[3] UNIV CALIF SAN DIEGO,LA JOLLA,CA 92093
关键词
D O I
10.1016/0375-9601(84)90844-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:309 / 313
页数:5
相关论文
共 11 条
[1]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[2]   STOCHASTICITY THRESHOLD FOR HAMILTONIANS WITH ZERO OR ONE PRIMARY RESONANCE [J].
CODACCIONI, JP ;
DOVEIL, F ;
ESCANDE, DF .
PHYSICAL REVIEW LETTERS, 1982, 49 (26) :1879-1883
[3]   DESTABILIZATION OF AN ENUMERABLE SET OF CYCLES IN A HAMILTONIAN SYSTEM [J].
DOVEIL, F ;
ESCANDE, DF .
PHYSICS LETTERS A, 1981, 84 (08) :399-403
[4]   RENORMALIZATION METHOD FOR COMPUTING THE THRESHOLD OF THE LARGE-SCALE STOCHASTIC-INSTABILITY IN 2-DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
DOVEIL, F .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (02) :257-284
[5]   RENORMALIZATION METHOD FOR THE ONSET OF STOCHASTICITY IN A HAMILTONIAN SYSTEM [J].
ESCANDE, DF ;
DOVEIL, F .
PHYSICS LETTERS A, 1981, 83 (07) :307-310
[6]   LARGE-SCALE STOCHASTICITY IN HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF .
PHYSICA SCRIPTA, 1982, T2 :126-141
[7]  
KADANOFF LP, 1981, UNPUB 9TH P MIDW SOL
[8]  
LICHTENBERG AJ, 1983, REGULAR STOCHASTIC M, P214
[9]   A RENORMALIZATION APPROACH TO INVARIANT CIRCLES IN AREA-PRESERVING MAPS [J].
MACKAY, RS .
PHYSICA D, 1983, 7 (1-3) :283-300
[10]  
REICHL LE, UNPUB PHYS REV A