DYNAMICS IN RUGGED ENERGY LANDSCAPES WITH APPLICATIONS TO THE S-PEPTIDE AND RIBONUCLEASE-A

被引:62
作者
STRAUB, JE [1 ]
RASHKIN, AB [1 ]
THIRUMALAI, D [1 ]
机构
[1] UNIV MARYLAND, INST PHYS SCI & TECHNOL, DEPT CHEM & BIOCHEM, College Pk, MD 20742 USA
关键词
D O I
10.1021/ja00084a051
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A simple means of computing the rate of conformational space sampling and energy transfer in computer simulations of biomolecules using replica molecular dynamics is described. The method is based on the idea that in an ergodic system trajectories should be self-averaging-properties measured over two independent trajectories must average to the same result. Replica molecular dynamics simulation is used to calculate the generalized ergodic measure and the rate of self-averaging for the force and potential energy for the S-peptide and RNase A enzyme over a range of temperatures from 40 to 400 K. The results clearly demonstrate that even on a short time scale on the order of 10 ps, several distinct conformational states are sampled. The ergodic measures are used to obtain quantitative estimates of the rate at which conformational substates separated by relatively small barriers (on the order of a few kcal/mol) are sampled. Examination of the ergodic measure for nonbonded and dihedral angle forces proves that the time required for effective conformational space sampling is long (especially motions involving long length scales) compared to realizable computational times at all temperatures. The atomic force ergodic measure is evaluated for a harmonic system of normal modes and shown to provide a direct means of calculating the second moment of the vibrational density of states for the protein using a short dynamics trajectory. Finally, the instantaneous normal mode spectrum is calculated for the S-peptide as a function of temperature. A simple model of the potential energy hypersurface is developed and used to interpret the fraction of unstable modes in terms of the distribution of energy barriers separating the various peptide conformational substates. The distribution of energy barriers has a constant density of low-energy barriers and a Poisson distribution of high-energy barriers. The resulting energy barrier distribution is used to calculate the number of dihedral angle transitions expected in a dynamic trajectory, and the results are in good agreement with those found in the simulations. This study contains the first semianalytic method for extracting the distribution of barrier heights in systems with complex energy landscapes. The implications of our study for biomolecular simulations are discussed.
引用
收藏
页码:2049 / 2063
页数:15
相关论文
共 49 条
[1]   ROLE OF NUCLEAR TUNNELING IN AQUEOUS FERROUS FERRIC ELECTRON-TRANSFER [J].
BADER, JS ;
KUHARSKI, RA ;
CHANDLER, D .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (01) :230-236
[2]   DYNAMICS OF DIFFUSION IN SMALL CLUSTER SYSTEMS [J].
BECK, TL ;
MARCHIORO, TL .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (02) :1347-1357
[3]   A SALT BRIDGE STABILIZES THE HELIX FORMED BY ISOLATED C-PEPTIDE OF RNASE-A [J].
BIERZYNSKI, A ;
KIM, PS ;
BALDWIN, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (08) :2470-2474
[4]   HARMONIC DYNAMICS OF PROTEINS - NORMAL-MODES AND FLUCTUATIONS IN BOVINE PANCREATIC TRYPSIN-INHIBITOR [J].
BROOKS, B ;
KARPLUS, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (21) :6571-6575
[5]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[6]  
Brooks III C. L., 1988, PROTEINS THEORETICAL
[7]   IDENTIFICATION OF 2 DISTINCT STRUCTURAL AND DYNAMIC DOMAINS IN AN AMORPHOUS WATER CLUSTER [J].
BUCH, V .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (04) :2631-2639
[8]   ORIGINS OF STRUCTURE IN GLOBULAR-PROTEINS [J].
CHAN, HS ;
DILL, KA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (16) :6388-6392
[9]   COMPACT POLYMERS [J].
CHAN, HS ;
DILL, KA .
MACROMOLECULES, 1989, 22 (12) :4559-4573
[10]   REACTION-PATH STUDY OF CONFORMATIONAL TRANSITIONS IN FLEXIBLE SYSTEMS - APPLICATIONS TO PEPTIDES [J].
CZERMINSKI, R ;
ELBER, R .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (09) :5580-5601