SOLVATION DYNAMICS IN DIELECTRIC SOLVENTS WITH RESTRICTED MOLECULAR ROTATIONS - POLYETHERS

被引:65
作者
OLENDER, R [1 ]
NITZAN, A [1 ]
机构
[1] TEL AVIV UNIV,SACKLER FAC MED,SCH CHEM,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1063/1.469113
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics simulations are used to study solvation and solvation dynamics of a classic charge in a series of ethers of increasing molecular weights, CH3(CH2OCH2)nH with n=1, 2, and 4. Equilibrium structures of the solvated species, ion mobility, linear response solvation functions, and nonequilibrium solvation are studied and compared with the corresponding results for a simple (Stockmayer) fluid. For a typical positive ion, Na+, solvation in these systems is found to belong to the nonlinear response regime; the nonlinear behavior is associated with the specific binding of the cation to the negative oxygen sites. Solvation dynamics in the timescale studied (t<0.5 ns) is found to be essentially bimodal, with a short component similar in duration and magnitude to that found in simpler solvents. However, except for the simplest system studied (ethyl methyl ether) the short time component is not Gaussian (i.e., its Gaussian part is limited to insignificantly short times) and cannot be interpreted as inertial free streaming of solvent molecules in the potential field of the solute. Instead we suggest that it originates from damped solvent vibrations about solvent inherent structures. The character of the solvent motions that drive the solvation process changes as the molecular size increases: From overall molecular rotations in the monoether, to intramolecular segmental motions in the larger solvents. It is suggested that solvation dynamics (studied, e.g., by laser induced fluorescence) can be used as a probe for the dynamics of such segmental motions in polymer electrolytes. © 1995 American Institute of Physics.
引用
收藏
页码:7180 / 7196
页数:17
相关论文
共 56 条
[1]   INTERMOLECULAR FORCES AND CHAIN FLEXIBILITIES IN POLYMERS .2. INTERNAL PRESSURES OF POLYMERS [J].
ALLEN, G ;
GEE, G ;
MANGARAJ, D ;
SIMS, D ;
WILSON, GJ .
POLYMER, 1960, 1 (04) :467-476
[2]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[3]   THEORY OF THE TIME DEVELOPMENT OF THE STOKES SHIFT IN POLAR MEDIA [J].
BAGCHI, B ;
OXTOBY, DW ;
FLEMING, GR .
CHEMICAL PHYSICS, 1984, 86 (03) :257-267
[4]  
BART E, UNPUB
[5]   MONTE-CARLO SIMULATIONS OF LIQUID ALKYL ETHERS WITH THE OPLS POTENTIAL FUNCTIONS [J].
BRIGGS, JM ;
MATSUI, T ;
JORGENSEN, WL .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (08) :958-971
[6]  
BRUS P, UNPUB
[7]   SOLVATION DYNAMICS FOR AN ION-PAIR IN A POLAR-SOLVENT - TIME-DEPENDENT FLUORESCENCE AND PHOTOCHEMICAL CHARGE-TRANSFER [J].
CARTER, EA ;
HYNES, JT .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (09) :5961-5979
[8]   EFFECTS OF SOLVENT VISCOELASTICITY IN THE SOLVATION DYNAMICS OF AN ION IN A DENSE DIPOLAR LIQUID [J].
CHANDRA, A ;
BAGCHI, B .
CHEMICAL PHYSICS, 1991, 156 (03) :323-338
[9]   ENERGY COMPONENT ANALYSIS FOR DILUTE AQUEOUS-SOLUTIONS OF LI+, NA+, F-, AND CL- IONS [J].
CHANDRASEKHAR, J ;
SPELLMEYER, DC ;
JORGENSEN, WL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1984, 106 (04) :903-910
[10]   FAST RESPONSES FROM SLOWLY RELAXING LIQUIDS - A COMPARATIVE-STUDY OF THE FEMTOSECOND DYNAMICS OF TRIACETIN, ETHYLENE-GLYCOL, AND WATER [J].
CHANG, YJ ;
CASTNER, EW .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (10) :7289-7299