THEORY OF QUASI-PERIODIC LATTICES .1. SCALING TRANSFORMATION FOR A QUASI-PERIODIC LATTICE

被引:41
作者
IGUCHI, K
机构
[1] Department of Physics, University of Utah, Salt Lake City
来源
PHYSICAL REVIEW B | 1991年 / 43卷 / 07期
关键词
D O I
10.1103/PhysRevB.43.5915
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A theory of quasiperiodic lattices that consist of only two types of atoms is introduced. If a ratio between the numbers of the two types of atoms in a chain is irrational, the lattice is quasiperiodic. First, we present the scaling transformation for the construction of any quasiperiodic lattice in terms of a continued-fraction expansion of the ratio. Second, we show that all the scaling transformations preserve an invariant surface, which was first discovered by Kohmoto, Kadanoff, and Tang.
引用
收藏
页码:5915 / 5918
页数:4
相关论文
共 17 条
[1]   APPROACH TO MARKOFF MINIMAL FORMS THROUGH MODULAR FUNCTIONS [J].
COHN, H .
ANNALS OF MATHEMATICS, 1955, 61 (01) :1-12
[2]  
COHN H, 1972, MATH ANN, V196, P8, DOI 10.1007/BF01419427
[3]  
COHN H, 1974, DISCONTINUOUS GROUPS, P81
[4]  
Fricke R., 1897, VORLESUNGEN THEORIE
[5]  
GUMPS G, 1988, PHYS REV LETT, V60, P1081
[6]  
HOLZER M, 1988, PHYS REV B, V38, P1708
[7]   THEORY OF QUASI-PERIODIC LATTICES .2. GENERIC TRACE MAP AND INVARIANT SURFACE [J].
IGUCHI, K .
PHYSICAL REVIEW B, 1991, 43 (07) :5919-5923
[8]  
IGUCHI K, 1990, THESIS U UTAH
[9]   QUASI-PERIODIC LATTICE - ELECTRONIC-PROPERTIES, PHONON PROPERTIES, AND DIFFUSION [J].
KOHMOTO, M ;
BANAVAR, JR .
PHYSICAL REVIEW B, 1986, 34 (02) :563-566
[10]   CRITICAL WAVE-FUNCTIONS AND A CANTOR-SET SPECTRUM OF A ONE-DIMENSIONAL QUASI-CRYSTAL MODEL [J].
KOHMOTO, M ;
SUTHERLAND, B ;
TANG, C .
PHYSICAL REVIEW B, 1987, 35 (03) :1020-1033