A FINITE-SIZE SCALING INVESTIGATION FOR Q-STATE HOPFIELD MODELS - STORAGE CAPACITY AND BASINS OF ATTRACTION

被引:4
作者
STIEFVATER, T
MULLER, KR
机构
[1] Inst. fur Logik, Komplexitat und Deduktions-syst., Karlsruhe Univ.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 22期
关键词
D O I
10.1088/0305-4470/25/22/019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The storage capacity of a Q-state Hopfield network is determined via finite-size scaling for parallel dynamics and Q less-than-or-equal-to 8. The results are in good agreement with theoretical predictions by Rieger. The basins of attraction and other associative memory properties are discussed for Q = 4. 6. A self-controlling Q-state model with improved basins of attraction is proposed.
引用
收藏
页码:5919 / 5929
页数:11
相关论文
共 14 条
[1]  
GERL S, 1992, LEARNING Q STATE CLO
[2]   NEURAL NETWORKS AND PHYSICAL SYSTEMS WITH EMERGENT COLLECTIVE COMPUTATIONAL ABILITIES [J].
HOPFIELD, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (08) :2554-2558
[3]  
HOPFIELD JJ, 1984, P NAT ACAD SCI US, V81
[4]   FINITE-STATE NEURAL NETWORKS - A STEP TOWARD THE SIMULATION OF VERY LARGE SYSTEMS [J].
KOHRING, GA .
JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) :563-576
[5]   STATISTICAL-MECHANICS FOR NETWORKS OF GRADED-RESPONSE NEURONS [J].
KUHN, R ;
BOS, S ;
VANHEMMEN, JL .
PHYSICAL REVIEW A, 1991, 43 (04) :2084-2087
[6]  
KUHN R, UNPUB
[7]  
KUHN R, 1990, SPRINGER LECT NOTES, V368, P19
[8]  
LITTLE W A, 1974, Mathematical Biosciences, V19, P101, DOI 10.1016/0025-5564(74)90031-5
[9]  
MERTENS S, 1991, LEARNING GREY TONED
[10]  
MULLER, 1992, P INT C ARTIFICIAL N