GENERALIZATION OF THE FORTUIN-KASTELEYN TRANSFORMATION AND ITS APPLICATION TO QUANTUM SPIN SIMULATIONS

被引:33
作者
KAWASHIMA, N [1 ]
GUBERNATIS, JE [1 ]
机构
[1] LOS ALAMOS NATL LAB,DIV THEORET,LOS ALAMOS,NM 87545
关键词
QUANTUM MONTE CARLO; CLUSTER ALGORITHM; XXZ MODEL; HEISENBERG MODEL; XY MODEL;
D O I
10.1007/BF02178358
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the Fortuin-Kasteleyn (FK) cluster representation of the partition function of the Ising model to represent the partition function of quantum spin models with an arbitrary spin magnitude in arbitrary dimensions. This generalized representation enables us to develop a new cluster algorithm for the simulation of quantum spin systems by the worldline Monte Carlo method. Because the Swendsen-Wang algorithm is based on the FK representation, the new cluster algorithm naturally includes it as a special case. As well as the general description of the new representation, we present an illustration of our new algorithm for some special interesting cases: the Ising model, the antiferromagnetic Heisenberg model with S=1, and a general Heisenberg model. The new algorithm is applicable to models with any range of the exchange interaction, any lattice geometry, and any dimensions.
引用
收藏
页码:169 / 221
页数:53
相关论文
共 28 条
[1]   PROJECTOR MONTE-CARLO METHOD [J].
BLANKENBECLER, R ;
SUGAR, RL .
PHYSICAL REVIEW D, 1983, 27 (06) :1304-1311
[2]  
BROWER R, 1992, PHYSICA A, V193, P314
[3]  
CODDINGTON PD, UNPUB
[4]   GENERALIZATION OF THE FORTUIN-KASTELEYN-SWENDSEN-WANG REPRESENTATION AND MONTE-CARLO ALGORITHM [J].
EDWARDS, RG ;
SOKAL, AD .
PHYSICAL REVIEW D, 1988, 38 (06) :2009-2012
[5]   CLUSTER ALGORITHM FOR VERTEX MODELS [J].
EVERTZ, HG ;
LANA, G ;
MARCU, M .
PHYSICAL REVIEW LETTERS, 1993, 70 (07) :875-879
[6]  
EVERTZ HG, 1992, QUANTUM MONTE CARLO, P65
[7]   RANDOM-CLUSTER MODEL .1. INTRODUCTION AND RELATION TO OTHER MODELS [J].
FORTUIN, CM ;
KASTELEYN, PW .
PHYSICA, 1972, 57 (04) :536-+
[8]  
HANDSCOMB DC, 1962, P CAMB PHILOS SOC, V58, P594
[9]   MONTE-CARLO STUDY OF THE TWO-DIMENSIONAL HUBBARD-MODEL [J].
HIRSCH, JE .
PHYSICAL REVIEW LETTERS, 1983, 51 (20) :1900-1903
[10]   TWO-DIMENSIONAL HUBBARD-MODEL - NUMERICAL-SIMULATION STUDY [J].
HIRSCH, JE .
PHYSICAL REVIEW B, 1985, 31 (07) :4403-4419