A SURVEY OF THE THEORY OF HYPERCUBE GRAPHS

被引:238
作者
HARARY, F [1 ]
HAYES, JP [1 ]
WU, HJ [1 ]
机构
[1] UNIV MICHIGAN, ADV COMP ARCHITECTURE LAB, ANN ARBOR, MI 48109 USA
关键词
D O I
10.1016/0898-1221(88)90213-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:277 / 289
页数:13
相关论文
共 43 条
[1]   GENUS OF N-CUBE [J].
BEINEKE, LW ;
HARARY, F .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (03) :494-&
[2]  
Cockayne E. J., 1977, Networks, V7, P247, DOI 10.1002/net.3230070305
[3]  
CVETKOVIC DM, 1969, PUBL ELECT FAK U BEO, V274, P91
[4]   LONGEST SEPARATED PATHS AND LOOPS IN AN N CUBE [J].
DAVIES, DW .
IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (02) :261-&
[5]   NUMBER OF HAMILTONIAN CIRCUITS IN N-CUBE [J].
DIXON, E ;
GOODMAN, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 50 (JUL) :500-504
[6]  
DJOKOVIC DZ, 1973, J COMB THEORY B, V14, P363
[7]   BOUNDS ON NUMBER HAMILTONIAN CIRCUITS IN N-CUBE [J].
DOUGLAS, RJ .
DISCRETE MATHEMATICS, 1977, 17 (02) :143-146
[8]  
Firsov V.V., 1965, CYBERNET SYSTEM ANAL, V1, P112
[9]   CHARACTERIZATION OF HYPERCUBES [J].
FOLDES, S .
DISCRETE MATHEMATICS, 1977, 17 (02) :155-159
[10]  
Forcade R., 1973, J COMB THEORY B, V14, P153