FINITE-ELEMENT METHODS FOR THE TIME-DEPENDENT GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY

被引:82
作者
DU, Q
机构
[1] Department of Mathematics, Michigan State University East Lansing
关键词
SUPERCONDUCTIVITY; TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS; FINITE ELEMENT METHODS;
D O I
10.1016/0898-1221(94)90091-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial-boundary value problem for the time-dependent Ginzburg-Landau equations that model the macroscopic behavior of superconductors is considered. The convergence of finite-dimensional, semidiscrete Galerkin approximations is studied as is a fully-discrete scheme. The results of some computational experiments are presented.
引用
收藏
页码:119 / 133
页数:15
相关论文
共 18 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]  
CHEN Z, NUMERICAL STUDIES NO
[3]  
CHEN Z, IN PRESS NONSTATIONA
[4]  
Ciarlet P.G., 2002, FINITE ELEMENT METHO
[5]   ANALYSIS AND APPROXIMATION OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY [J].
DU, Q ;
GUNZBURGER, MD ;
PETERSON, JS .
SIAM REVIEW, 1992, 34 (01) :54-81
[6]  
DU Q, IN PRESS 1ST P WORLD
[7]  
DU Q, IN PRESS APPLIC ANAL
[8]  
ELLIOTT CG, IN PRESS
[9]   THE MAGNETIZATION PROCESS IN TYPE-II SUPERCONDUCTING FILM [J].
ENOMOTO, Y ;
KATO, R .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (32) :L433-L438
[10]   FLUX DYNAMICS AND THE GROWTH OF THE SUPERCONDUCTING PHASE [J].
FRAHM, H ;
ULLAH, S ;
DORSEY, AT .
PHYSICAL REVIEW LETTERS, 1991, 66 (23) :3067-3070