EXACT RESULTS ON SCALING EXPONENTS IN THE 2D ENSTROPHY CASCADE

被引:34
作者
EYINK, GL
机构
[1] Department of Mathematics, University of Arizona, Tucson
关键词
D O I
10.1103/PhysRevLett.74.3800
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish rigorous inequalities for short-distance scaling exponents in 2D incompressible turbulence. Using only the condition of constant ultraviolet enstrophy flux, we show that (Δlω)p∼ζp must have ζ2≤2/3 (Sulem-Frisch bound) and ζp≤0, for p3. If the minimum Hölder singularity of the vorticity is negative, hmin<0, then the bounds can be improved to ζp≤τp/3, where τp is the scaling exponent of a local enstrophy flux: |Z|p∼τp. However, if hmin=0, then ζp=0 for p2 and Kraichnan theory is exact. © 1995 The American Physical Society.
引用
收藏
页码:3800 / 3803
页数:4
相关论文
共 20 条
[1]   OPTIMAL WAVELET ANALYSIS AND ITS APPLICATION TO 2-DIMENSIONAL TURBULENCE [J].
BENZI, R ;
VERGASSOLA, M .
FLUID DYNAMICS RESEARCH, 1991, 8 (1-4) :117-126
[2]   LOCAL ENERGY FLUX AND THE REFINED SIMILARITY HYPOTHESIS [J].
EYINK, GL .
JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (1-2) :335-351
[3]   BESOV-SPACES AND THE MULTIFRACTAL HYPOTHESIS [J].
EYINK, GL .
JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (1-2) :353-375
[4]  
EYINK GL, IN PRESS EXACT RESUL
[5]   NONLOCAL VORTICITY CASCADE IN 2 DIMENSIONS [J].
FALKOVICH, G ;
LEBEDEV, V .
PHYSICAL REVIEW E, 1994, 49 (03) :R1800-R1804
[6]   INTERPRETATION OF 2-DIMENSIONAL TURBULENCE ENERGY-SPECTRUM IN TERMS OF QUASI-SINGULARITY IN SOME VORTEX CORES [J].
FARGE, M ;
HOLSCHNEIDER, M .
EUROPHYSICS LETTERS, 1991, 15 (07) :737-743
[7]  
KATO T, 1967, ARCH RATION MECH AN, V25, P189
[8]  
Kraichnan R. H., 1974, Journal of Fluid Mechanics, V64, P737, DOI 10.1017/S0022112074001881
[9]   INERTIAL RANGES IN 2-DIMENSIONAL TURBULENCE [J].
KRAICHNAN, RH .
PHYSICS OF FLUIDS, 1967, 10 (07) :1417-+
[10]   STATISTICAL DYNAMICS OF 2-DIMENSIONAL FLOW [J].
KRAICHNAN, RH .
JOURNAL OF FLUID MECHANICS, 1975, 67 (JAN14) :155-175