ASYMPTOTIC ANALYSIS OF A STATE-DEPENDENT M/G/1 QUEUING SYSTEM

被引:16
作者
KNESSL, C
MATKOWSKY, BJ
SCHUSS, Z
TIER, C
机构
[1] TEL AVIV UNIV,DEPT MATH,IL-69978 TEL AVIV,ISRAEL
[2] UNIV ILLINOIS,DEPT MATH STAT & COMP SCI,CHICAGO,IL 60680
关键词
November; 1984; No. B-154 Research Reports on Information Sciences; Series B * I am grateful to Michiel H. van Hoorn for providing me detailed data of the exact mean waiting times. This research was supported in part by the Sakkokai Foundation;
D O I
10.1137/0146033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
24
引用
收藏
页码:483 / 505
页数:23
相关论文
共 26 条
[1]  
BURMAN DY, 1979, THESIS NEW YORK U
[2]  
DANIELS HE, 1960, J ROY STAT SOC B, V22, P376
[3]  
Feller W., 1966, INTRO PROBABILITY TH, V2
[4]  
GAVER DP, 1973, SIAM J COMPUT, V14, P183
[5]  
GAVER DP, 1983, PROBABILITY COMPUTER
[6]  
GELENBE E, 1980, ANAL SYNTHESIS COMPU
[7]   APPROXIMATION FOR BUSY PERIOD OF M-G-1 QUEUE USING A DIFFUSION-MODEL [J].
HEYMAN, DP .
JOURNAL OF APPLIED PROBABILITY, 1974, 11 (01) :159-169
[8]   TIME-DEPENDENT QUEUES [J].
KELLER, JB .
SIAM REVIEW, 1982, 24 (04) :401-412
[9]   RAYS, WAVES AND ASYMPTOTICS [J].
KELLER, JB .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (05) :727-750
[10]   DIFFUSION-APPROXIMATION FOR AN M/G/M QUEUE [J].
KIMURA, T .
OPERATIONS RESEARCH, 1983, 31 (02) :304-321