KINETIC-ENERGY DENSITY AND PAULI POTENTIAL - DIMENSIONALITY DEPENDENCE, GRADIENT EXPANSIONS AND NONLOCALITY

被引:41
作者
HOLAS, A
KOZLOWSKI, PM
MARCH, NH
机构
[1] UNIV OXFORD, DEPT THEORET CHEM, OXFORD OX1 3UB, ENGLAND
[2] UNIV ARIZONA, DEPT CHEM, TUCSON, AZ 85721 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 18期
关键词
D O I
10.1088/0305-4470/24/18/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For arbitrary level filling, the fully non-local kinetic energy density and Pauli potential for the one-dimensional harmonic oscillator can be constructed explicitly. In the present work, these exact results are eventually compared with the low-order gradient expansions. This prompts a fuller study of the dimensionality dependence of low-order gradient expansions for systems with general one-body potentials, and its relevance to the theory of the Pauli potential. One consequence of the present work is to display the generalization to D-dimensions as (D-2)/3D of the three-dimensional Kirzhnits coefficient 1/9 of the von Weizsacker term in the kinetic energy density.
引用
收藏
页码:4249 / 4260
页数:12
相关论文
共 21 条
[1]   ONE-DIMENSIONAL KINETIC-ENERGY DENSITY FUNCTIONALS COMPATIBLE WITH THE DIFFERENTIAL VIRIAL-THEOREM [J].
BALTIN, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (01) :111-120
[2]   ONE-DIMENSIONAL HYPERVIRIAL THEOREMS IN DENSITY FUNCTIONAL THEORY [J].
BALTIN, R .
PHYSICS LETTERS A, 1985, 113 (03) :121-125
[3]   SOME TESTS OF AN APPROXIMATE DENSITY FUNCTIONAL FOR THE GROUND-STATE KINETIC-ENERGY OF A FERMION SYSTEM [J].
HERRING, C ;
CHOPRA, M .
PHYSICAL REVIEW A, 1988, 37 (01) :31-42
[4]   QUANTUM CORRECTIONS TO THOMAS-FERMI APPROXIMATION - KIRZHNITS METHOD [J].
HODGES, CH .
CANADIAN JOURNAL OF PHYSICS, 1973, 51 (13) :1428-1437
[5]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919
[6]  
HOLAS A, 1991, IN PRESS PHYS REV
[7]  
Husimi K., 1940, PROC PHYS MATH SOC J, V22, P264, DOI [DOI 10.11429/PPMSJ1919.22.4_264, 10.11429/ppmsj1919.22.4_264]
[8]   SUM-RULES AND STATIC LOCAL-FIELD CORRECTIONS OF ELECTRON LIQUIDS IN 2 AND 3 DIMENSIONS [J].
IWAMOTO, N .
PHYSICAL REVIEW A, 1984, 30 (06) :3289-3304
[9]   DENSITY FUNCTIONAL THEORY AND VONWEIZSACKER METHOD [J].
JONES, W ;
YOUNG, WH .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1971, 4 (11) :1322-&
[10]  
Kirzhnitz D.A., 1957, ZH EKSP TEOR FIZ, V32, P115