A CRAMER-RAO TYPE LOWER BOUND FOR ESTIMATORS WITH VALUES IN A MANIFOLD

被引:40
作者
HENDRIKS, H
机构
[1] Katholieke Universiteit Nijmegen, Nijmegen
关键词
CRAMER-RAO INEQUALITY; MINIMUM VARIANCE UNBIASED ESTIMATION; UNBIASED ESTIMATORS WITH VALUES IN A MANIFOLD; HESSIAN; FISHER INFORMATION; COVARIANCE; EFFICIENCY; WEINGARTEN MAP; EXPONENTIAL FAMILY OF PROBABILITY DISTRIBUTIONS; MEAN LOCATION; FISHER-VONMISES DISTRIBUTIONS; INTEGRAL MANIFOLD;
D O I
10.1016/0047-259X(91)90044-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A Cramér-Rao type lower bound for minimum loss unbiased estimators with values in a manifold is derived, and the corresponding notion of efficiency is investigated. A by-product is a generalisation of the concept of covariance of a multivariate statistic to one of a statistic with values in a manifold. © 1991.
引用
收藏
页码:245 / 261
页数:17
相关论文
共 11 条
[1]  
BARNDORFFNIELSE.O, 1978, INFORMATION EXPONENT
[2]  
CENCOV NN, 1982, TRANSLATION MATH MON, V53
[3]   DISPERSION ON A SPHERE [J].
FISHER, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1953, 217 (1130) :295-305
[4]  
HENDRIKS H, 1990, CUT LOCUS SOUS VARIT
[5]  
HENDRIKS HWM, 1989, CR ACAD SCI I-MATH, V311, P637
[6]  
KOBAYASHI S, 1969, F DIFFERENTIAL GEOME, V2
[7]  
KOBAYASHI S, 1963, F DIFFERENTIAL GEOME, V1
[8]  
MARDIA KV, 1975, STATISTICS DIRECTION
[9]  
Milnor J.V., 1963, MORSE THEORY
[10]  
RAO CR, 1973, LINEAR STATISTICAL I