SELF-ORGANIZATION AND ANOMALOUS DIFFUSION

被引:20
作者
BANTAY, P [1 ]
JANOSI, IM [1 ]
机构
[1] EOTVOS LORAND UNIV,DEPT ATOM PHYS,H-1088 BUDAPEST,HUNGARY
来源
PHYSICA A | 1992年 / 185卷 / 1-4期
基金
匈牙利科学研究基金会;
关键词
D O I
10.1016/0378-4371(92)90432-P
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The self-organizing process is investigated in the continuum limit of the cellular automaton model introduced by Bak, Tang and Wiesenfeld. An anomalous diffusion equation is proposed for the description of this process, and an analytical method for the solution is presented in one dimension, based on an adiabatic approximation.
引用
收藏
页码:11 / 18
页数:8
相关论文
共 12 条
  • [1] SELF-ORGANIZED CRITICALITY
    BAK, P
    TANG, C
    WIESENFELD, K
    [J]. PHYSICAL REVIEW A, 1988, 38 (01): : 364 - 374
  • [2] SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE
    BAK, P
    TANG, C
    WIESENFELD, K
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (04) : 381 - 384
  • [3] BANTAY P, UNPUB PHYS REV LETT
  • [4] SELF-ORGANIZED CRITICAL STATE OF SANDPILE AUTOMATON MODELS
    DHAR, D
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (14) : 1613 - 1616
  • [5] RESULTS ON THE CONTINUOUS-ENERGY SELF-ORGANIZED CRITICAL MODEL IN ONE DIMENSION
    FODOR, Z
    JANOSI, IM
    [J]. PHYSICAL REVIEW A, 1991, 44 (02): : 1386 - 1389
  • [6] Kiss L. B., 1988, Reviews of Solid State Science, V2, P659
  • [7] Mandelbrot B. B, 1982, FRACTAL GEOMETRY NAT, V1, P170
  • [8] CASCADES AND SELF-ORGANIZED CRITICALITY
    MANNA, SS
    KISS, LB
    KERTESZ, J
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (3-4) : 923 - 932
  • [9] THEORETICAL-STUDIES OF SELF-ORGANIZED CRITICALITY
    PIETRONERO, L
    TARTAGLIA, P
    ZHANG, YC
    [J]. PHYSICA A, 1991, 173 (1-2): : 22 - 44
  • [10] Press W., 1986, NUMERICAL RECIPES FO