LARVAL REGULATION OF ADULT LONGEVITY IN A GENETICALLY-SELECTED LONG-LIVED STRAIN OF DROSOPHILA

被引:35
作者
BUCK, S
NICHOLSON, M
DUDAS, S
WELLS, R
FORCE, A
BAKER, GT
ARKING, R
机构
[1] WAYNE STATE UNIV,DEPT BIOL SCI,DETROIT,MI 48202
[2] WAYNE STATE UNIV,INST GERONTOL,DETROIT,MI 48202
[3] NIA,GERONTOL RES CTR,BALTIMORE,MD 21224
关键词
GENETICS OF AGING; LARVAL ENVIRONMENT; LONGEVITY;
D O I
10.1038/hdy.1993.103
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Our previous work has shown that the major genes involved in the expression of the extended-longevity phenotype are located on the third chromosome. Furthermore, their expression is negatively and positively influenced by chromosomes 2 and 1, respectively. In this report we show that the expression of the extended-longevity phenotype is dependent on the larval environment. A controlled chromosome substitution experiment was carried out using a strain selected for long life (L) and its parent (R) strain. Twenty different combinations of the three major chromosomes were conducted and their longevities were determined under both high (HD) and low (LD) larval density conditions. The extended-longevity phenotype was only expressed under HD conditions. The chromosome interactions were not apparent under LD conditions. Density-shift experiments delineate a critical period for expression of the extended-longevity phenotype, extending from 60 h after egg laying (AEL) to 96 h AEL, during which the developing animal must be exposed to HD conditions if the extended-longevity phenotype is to be expressed. The change from HD to LD conditions is accompanied by statistically significant increases in body weight. The possible role of a dietary restriction phenomenon is examined and the implications of these findings discussed. It is now apparent, however, that the extended-longevity phenotype in Drosophila is a developmental genetic process.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 41 条
  • [1] GENETIC ALTERATION OF NORMAL AGING PROCESSES IS RESPONSIBLE FOR EXTENDED LONGEVITY IN DROSOPHILA
    ARKING, R
    WELLS, RA
    [J]. DEVELOPMENTAL GENETICS, 1990, 11 (02): : 141 - 148
  • [2] METABOLIC RATES IN GENETICALLY BASED LONG LIVED STRAINS OF DROSOPHILA
    ARKING, R
    BUCK, S
    WELLS, RA
    PRETZLAFF, R
    [J]. EXPERIMENTAL GERONTOLOGY, 1988, 23 (01) : 59 - 76
  • [3] ELEVATED PARAQUAT RESISTANCE CAN BE USED AS A BIOASSAY FOR LONGEVITY IN A GENETICALLY BASED LONG-LIVED STRAIN OF DROSOPHILA
    ARKING, R
    BUCK, S
    BERRIOS, A
    DWYER, S
    BAKER, GT
    [J]. DEVELOPMENTAL GENETICS, 1991, 12 (05): : 362 - 370
  • [4] Arking R., 1987, Experimental Gerontology, V22, P223, DOI 10.1016/0531-5565(87)90042-8
  • [5] INDUCTION OF GENE ACTIVITY IN DROSOPHILA BY HEAT SHOCK
    ASHBURNER, M
    BONNER, JJ
    [J]. CELL, 1979, 17 (02) : 241 - 254
  • [6] ASHBURNER R, 1987, EXP GERONTOL, V22, P199
  • [8] Bakker K., 1961, Archives Neerlandaises de Zoologie Leiden, V14, P200
  • [9] HYDROGEN-PEROXIDE ACTIVATES IMMEDIATE BINDING OF A DROSOPHILA FACTOR TO DNA HEAT-SHOCK REGULATORY ELEMENT INVIVO AND INVITRO
    BECKER, J
    MEZGER, V
    COURGEON, AM
    BESTBELPOMME, M
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1990, 189 (03): : 553 - 558
  • [10] BOETELLA LM, 1985, J INSECT PHYSL, V31, P179