ALPHA-HELIX STABILITY AND THE NATIVE-STATE OF MYOGLOBIN

被引:27
作者
LIN, L [1 ]
PINKER, RJ [1 ]
KALLENBACH, NR [1 ]
机构
[1] NYU,DEPT CHEM,NEW YORK,NY 10003
关键词
D O I
10.1021/bi00210a011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Native proteins fold to form structures that contain secondary-structure regular patterns in the peptide backbone, such as alpha-helix, beta-structure, and turns with high frequency. The role of this secondary structure in stabilizing the native folded state is presently unclear. Alanine substitutions at helical sites in myoglobin show no correlation with the helical propensity of the side chains involved. In an effort to demonstrate a relationship between the effect of a side chain on stabilizing secondary structure and the native structure, we have carried out site-directed changes in the sequence of the helical protein sperm whale myoglobin. Fully buried hydrophobic side chains were exchanged for similar side chains at sites corresponding to midhelical positions in the native state. The results show a positive correlation between the alpha-helix-forming ability of the substituted side chain and the stability of the mutant proteins, when differences between the size of the side chains are taken into account. If in addition, each type of amino acid substitution is averaged over different sites, the helix propensities of the amino acids account for much of the residual variation. This implies that the stability of the native state of a protein is coupled to that of secondary structural elements in the structure. In magnitude, the net contribution of propensity differences is smaller than hydrophobic effects, but not negligible in terms of the net free energy of unfolding.
引用
收藏
页码:12638 / 12643
页数:6
相关论文
共 52 条
[1]   REVERSIBLE DENATURATION OF SPERM WHALE MYOGLOBIN .I. DEPENDENCE ON TEMPERATURE PH AND COMPOSITION [J].
ACAMPORA, G ;
HERMANS, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1967, 89 (07) :1543-&
[3]   THE MOLTEN GLOBULE INTERMEDIATE OF APOMYOGLOBIN AND THE PROCESS OF PROTEIN FOLDING [J].
BARRICK, D ;
BALDWIN, RL .
PROTEIN SCIENCE, 1993, 2 (06) :869-876
[4]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[5]   STRUCTURAL BASIS OF AMINO-ACID ALPHA-HELIX PROPENSITY [J].
BLABER, M ;
ZHANG, XJ ;
MATTHEWS, BW .
SCIENCE, 1993, 260 (5114) :1637-1640
[6]   NATURE OF ACCESSIBLE AND BURIED SURFACES IN PROTEINS [J].
CHOTHIA, C .
JOURNAL OF MOLECULAR BIOLOGY, 1976, 105 (01) :1-14
[7]   SIDE-CHAIN ENTROPY OPPOSES ALPHA-HELIX FORMATION BUT RATIONALIZES EXPERIMENTALLY DETERMINED HELIX-FORMING PROPENSITIES [J].
CREAMER, TP ;
ROSE, GD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (13) :5937-5941
[8]   DOMINANT FORCES IN PROTEIN FOLDING [J].
DILL, KA .
BIOCHEMISTRY, 1990, 29 (31) :7133-7155
[9]   PROTEIN FOLDING STUDIED USING HYDROGEN-EXCHANGE LABELING AND 2-DIMENSIONAL NMR [J].
ENGLANDER, SW ;
MAYNE, L .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1992, 21 :243-265
[10]   RESPONSE OF A PROTEIN-STRUCTURE TO CAVITY-CREATING MUTATIONS AND ITS RELATION TO THE HYDROPHOBIC EFFECT [J].
ERIKSSON, AE ;
BAASE, WA ;
ZHANG, XJ ;
HEINZ, DW ;
BLABER, M ;
BALDWIN, EP ;
MATTHEWS, BW .
SCIENCE, 1992, 255 (5041) :178-183