H-2 CONTROL FOR DISCRETE-TIME-SYSTEMS OPTIMALITY AND ROBUSTNESS

被引:16
作者
PERES, PLD
GEROMEL, JC
机构
[1] LAC-DT/Faculty of Electrical Engineering, UNICAMP, 13081 Campinas, SP
基金
巴西圣保罗研究基金会;
关键词
DISCRETE-TIME SYSTEMS; ETA-2-OPTIMAL CONTROL; CONVEX PROGRAMMING; LINEAR OPTIMAL CONTROL; ROBUSTNESS; ROBUST CONTROL;
D O I
10.1016/0005-1098(93)90186-W
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new approach to determine H2 optimal control for discrete-time linear systems, based on convex programming. It is shown that all stabilizing state feedback control gains belong to a certain convex set, well-defined in a special parameter space. The Linear Quadratic Problem can be then formulated as the minimization of a linear objective over a convex set. The optimal solution of this convex problem furnishes, under certain conditions, the same feedback control gain which is obtained from the classical discrete-time Riccati equation solution. Furthermore, the method proposed can also handle additional constraints, for instance, the ones needed to assure asymptotical stability of discrete-time systems under actuators failure. Some examples illustrate the theory.
引用
收藏
页码:225 / 228
页数:4
相关论文
共 6 条
[1]  
Anderson B., 1971, LINEAR OPTIMAL CONTR
[2]   A LINEAR-PROGRAMMING ORIENTED PROCEDURE FOR QUADRATIC STABILIZATION OF UNCERTAIN SYSTEMS [J].
BERNUSSOU, J ;
PERES, PLD ;
GEROMEL, JC .
SYSTEMS & CONTROL LETTERS, 1989, 13 (01) :65-72
[3]   OPTIMAL LINEAR REGULATORS - DISCRETE-TIME CASE [J].
DORATO, P ;
LEVIS, AH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (06) :613-+
[4]   ON A CONVEX PARAMETER SPACE METHOD FOR LINEAR-CONTROL DESIGN OF UNCERTAIN SYSTEMS [J].
GEROMEL, JC ;
PERES, PLD ;
BERNUSSOU, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (02) :381-402
[5]  
Kwakernaak H., 1972, LINEAR OPTIMAL CONTR
[6]  
LUENBERGER DG, 1973, INTRO LINEAR PROGRAM