ENTROPY OF A FUZZY PROCESS

被引:30
作者
DUMITRESCU, D
机构
[1] Department of Mathematics, University of Cluj-Napoca
关键词
FUZZY MEASURE; ENTROPY OF A FUZZY PARTITION; MEASURE-PRESERVING TRANSFORMATION; FUZZY PROCESS; ENTROPY OF A FUZZY PROCESS;
D O I
10.1016/0165-0114(93)90129-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Using an additive fuzzy measure [1] in [5] a general concept of entropy of a fuzzy partition has been considered. This concept is used to define the entropy of a fuzzy process. In this paper some properties of this entropy are summarized. These results could be used to build a Fuzzy Ergodic Theory. In a further paper the entropy of a measure-preserving transformation of a fuzzy measure space will be studied.
引用
收藏
页码:169 / 177
页数:9
相关论文
共 11 条
[1]   ADDITIVE FUZZY MEASURES AND INTEGRALS .1. [J].
BUTNARIU, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 93 (02) :436-452
[2]   FUZZY PARTITIONS WITH THE CONNECTIVES T-INFINITY, S-INFINITY [J].
DUMITRESCU, D .
FUZZY SETS AND SYSTEMS, 1992, 47 (02) :193-195
[3]  
DUMITRESCU D, 1988, FUZZY SETS SYSTEMS, V28, P45
[4]  
DUMITRESCU D, 1985, ITINERANT SEMINAR FU, P71
[5]  
DUMITRESCU D, IN PRESS J MATH ANAL
[6]   A NEW APPROACH TO CLUSTERING [J].
RUSPINI, EH .
INFORMATION AND CONTROL, 1969, 15 (01) :22-&
[7]  
Schweizer B., 1960, PAC J MATH, V10, P314, DOI DOI 10.2140/PJM.1960.10.313
[8]  
Tanaka H., 1976, Kybernetes, V5, P25, DOI 10.1108/eb005404
[9]  
TANEJA IJ, 1987, 2ND IFSA C TOK, V2, P696
[10]  
Walters P., 2000, INTRO ERGODIC THEORY, V79